Python config.num_epochs() Examples
The following are 5
code examples of config.num_epochs().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
config
, or try the search function
.
Example #1
Source File: main.py From AugMix_TF2 with MIT License | 5 votes |
def main(): args = parse_args() print('\nCalled with args:') for key in args: print(f"{key:<10}: {args[key]}") print("="*78) # get the command line args config.max_lr = args["max_lr"] config.min_lr = args["min_lr"] config.batch_size = args["batch_size"] config.num_epochs = args["epochs"] config.IMAGE_SIZE = args["img_size"] config.plot_name = args["plot_name"] if args["save_dir_path"] == "": config.save_dir_path = './model_checkpoints' else: config.save_dir_path = args["save_dir_path"] # get the data print("\nLoading data now.", end=" ") x_train, y_train, x_test, y_test, y_train_cat, y_test_cat = get_cifar_data() training_data = [x_train, y_train, y_train_cat] validation_data = [x_test, y_test, y_test_cat] print("Data loading complete. \n") # pass the arguments to the trainer train(training_data=training_data, validation_data=validation_data, batch_size=config.batch_size, nb_epochs=config.num_epochs, min_lr=config.min_lr, max_lr=config.max_lr, save_dir_path=config.save_dir_path) ###########################################################################
Example #2
Source File: main.py From wide-resnet.pytorch with MIT License | 5 votes |
def train(epoch): net.train() net.training = True train_loss = 0 correct = 0 total = 0 optimizer = optim.SGD(net.parameters(), lr=cf.learning_rate(args.lr, epoch), momentum=0.9, weight_decay=5e-4) print('\n=> Training Epoch #%d, LR=%.4f' %(epoch, cf.learning_rate(args.lr, epoch))) for batch_idx, (inputs, targets) in enumerate(trainloader): if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() # GPU settings optimizer.zero_grad() inputs, targets = Variable(inputs), Variable(targets) outputs = net(inputs) # Forward Propagation loss = criterion(outputs, targets) # Loss loss.backward() # Backward Propagation optimizer.step() # Optimizer update train_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += predicted.eq(targets.data).cpu().sum() sys.stdout.write('\r') sys.stdout.write('| Epoch [%3d/%3d] Iter[%3d/%3d]\t\tLoss: %.4f Acc@1: %.3f%%' %(epoch, num_epochs, batch_idx+1, (len(trainset)//batch_size)+1, loss.item(), 100.*correct/total)) sys.stdout.flush()
Example #3
Source File: main.py From dl2 with MIT License | 5 votes |
def test(epoch): global best_acc, best_model net.eval() test_loss = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(validloader): if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() inputs, targets = Variable(inputs, volatile=True), Variable(targets) outputs = net(inputs) loss = criterion(outputs, targets) test_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += predicted.eq(targets.data).cpu().sum() # Save checkpoint when best model acc = 100.*float(correct)/total print("\n| Validation Epoch #%d\t\t\tLoss: %.4f Acc@1: %.2f%%" %(epoch, loss.item(), acc)) if acc > best_acc: #print('| Saving Best model...\t\t\tTop1 = %.2f%%' %(acc)) best_model = save(acc, num_epochs, net, best=True) best_acc = acc
Example #4
Source File: trainer.py From neural-question-generation with MIT License | 5 votes |
def train(self): batch_num = len(self.train_loader) best_loss = 1e10 for epoch in range(1, config.num_epochs + 1): self.model.train() print("epoch {}/{} :".format(epoch, config.num_epochs), end="\r") start = time.time() # halving the learning rate after epoch 8 if epoch >= 8 and epoch % 2 == 0: self.lr *= 0.5 state_dict = self.optim.state_dict() for param_group in state_dict["param_groups"]: param_group["lr"] = self.lr self.optim.load_state_dict(state_dict) for batch_idx, train_data in enumerate(self.train_loader, start=1): batch_loss = self.step(train_data) self.model.zero_grad() batch_loss.backward() # gradient clipping nn.utils.clip_grad_norm_(self.model.parameters(), config.max_grad_norm) self.optim.step() batch_loss = batch_loss.detach().item() msg = "{}/{} {} - ETA : {} - loss : {:.4f}" \ .format(batch_idx, batch_num, progress_bar(batch_idx, batch_num), eta(start, batch_idx, batch_num), batch_loss) print(msg, end="\r") val_loss = self.evaluate(msg) if val_loss <= best_loss: best_loss = val_loss self.save_model(val_loss, epoch) print("Epoch {} took {} - final loss : {:.4f} - val loss :{:.4f}" .format(epoch, user_friendly_time(time_since(start)), batch_loss, val_loss))
Example #5
Source File: train.py From garbageClassifier with MIT License | 4 votes |
def train(config): # prepare if not os.path.exists(config.save_dir): os.mkdir(config.save_dir) use_cuda = torch.cuda.is_available() # define the model model = NetsTorch(net_name=config.net_name, pretrained=config.load_pretrained, num_classes=config.num_classes) if use_cuda: os.environ['CUDA_VISIBLE_DEVICES'] = config.gpus if config.ngpus > 1: model = nn.DataParallel(model).cuda() else: model = model.cuda() model.train() # dataset dataset_train = ImageFolder(data_dir=config.traindata_dir, image_size=config.image_size, is_train=True) saveClasses(dataset_train.classes, config.clsnamespath) dataset_test = ImageFolder(data_dir=config.testdata_dir, image_size=config.image_size, is_train=False) dataloader_train = torch.utils.data.DataLoader(dataset_train, batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers) dataloader_test = torch.utils.data.DataLoader(dataset_test, batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers) Logging('Train dataset size: %d...' % len(dataset_train), config.logfile) Logging('Test dataset size: %d...' % len(dataset_test), config.logfile) # optimizer optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate) criterion = nn.CrossEntropyLoss() # train FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor for epoch in range(1, config.num_epochs+1): Logging('[INFO]: epoch now is %d...' % epoch, config.logfile) for batch_i, (imgs, labels) in enumerate(dataloader_train): imgs = imgs.type(FloatTensor) labels = labels.type(FloatTensor) optimizer.zero_grad() preds = model(imgs) loss = criterion(preds, labels.long()) if config.ngpus > 1: loss = loss.mean() Logging('[INFO]: batch%d of epoch%d, loss is %.2f...' % (batch_i, epoch, loss.item()), config.logfile) loss.backward() optimizer.step() if ((epoch % config.save_interval == 0) and (epoch > 0)) or (epoch == config.num_epochs): pklpath = os.path.join(config.save_dir, 'epoch_%s.pkl' % str(epoch)) if config.ngpus > 1: cur_model = model.module else: cur_model = model torch.save(cur_model.state_dict(), pklpath) acc = test(model, dataloader_test) Logging('[INFO]: Accuracy of epoch %d is %.2f...' % (epoch, acc), config.logfile)