Python pylab.tight_layout() Examples
The following are 22
code examples of pylab.tight_layout().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pylab
, or try the search function
.
Example #1
Source File: test_turbo_seti.py From turbo_seti with MIT License | 7 votes |
def plot_hits(filename_fil, filename_dat): """ Plot the hits in a .dat file. """ table = find_event.read_dat(filename_dat) print(table) plt.figure(figsize=(10, 8)) N_hit = len(table) if N_hit > 10: print("Warning: More than 10 hits found. Only plotting first 10") N_hit = 10 for ii in range(N_hit): plt.subplot(N_hit, 1, ii+1) plot_event.plot_hit(filename_fil, filename_dat, ii) plt.tight_layout() plt.savefig(filename_dat.replace('.dat', '.png')) plt.show()
Example #2
Source File: analysis.py From smallrnaseq with GNU General Public License v3.0 | 6 votes |
def plot_pca(pX, palette='Spectral', labels=None, ax=None, colors=None): """Plot PCA result, input should be a dataframe""" if ax==None: fig,ax=plt.subplots(1,1,figsize=(6,6)) cats = pX.index.unique() colors = sns.mpl_palette(palette, len(cats)+1) print (len(cats), len(colors)) for c, i in zip(colors, cats): #print (i, len(pX.ix[i])) #if not i in pX.index: continue ax.scatter(pX.ix[i, 0], pX.ix[i, 1], color=c, s=90, label=i, lw=.8, edgecolor='black', alpha=0.8) ax.set_xlabel('PC1') ax.set_ylabel('PC2') i=0 if labels is not None: for n, point in pX.iterrows(): l=labels[i] ax.text(point[0]+.1, point[1]+.1, str(l),fontsize=(9)) i+=1 ax.legend(fontsize=10,bbox_to_anchor=(1.5, 1.05)) sns.despine() plt.tight_layout() return
Example #3
Source File: plotting.py From smallrnaseq with GNU General Public License v3.0 | 6 votes |
def heatmap(df,fname=None,cmap='seismic',log=False): """Plot a heat map""" from matplotlib.colors import LogNorm f=plt.figure(figsize=(8,8)) ax=f.add_subplot(111) norm=None df=df.replace(0,.1) if log==True: norm=LogNorm(vmin=df.min().min(), vmax=df.max().max()) hm = ax.pcolor(df,cmap=cmap,norm=norm) plt.colorbar(hm,ax=ax,shrink=0.6,norm=norm) plt.yticks(np.arange(0.5, len(df.index), 1), df.index) plt.xticks(np.arange(0.5, len(df.columns), 1), df.columns, rotation=90) #ax.axvline(4, color='gray'); ax.axvline(8, color='gray') plt.tight_layout() if fname != None: f.savefig(fname+'.png') return ax
Example #4
Source File: analysis.py From smallrnaseq with GNU General Public License v3.0 | 6 votes |
def summarise_reads(path): """Count reads in all files in path""" resultfile = os.path.join(path, 'read_stats.csv') files = glob.glob(os.path.join(path,'*.fastq')) vals=[] rl=[] for f in files: label = os.path.splitext(os.path.basename(f))[0] s = utils.fastq_to_dataframe(f) l = len(s) vals.append([label,l]) print (label, l) df = pd.DataFrame(vals,columns=['path','total reads']) df.to_csv(resultfile) df.plot(x='path',y='total reads',kind='barh') plt.tight_layout() plt.savefig(os.path.join(path,'total_reads.png')) #df = pd.concat() return df
Example #5
Source File: plotting.py From smallrnaseq with GNU General Public License v3.0 | 6 votes |
def plot_fractions(df, label=None): """Process results of multiple mappings to get fractions of each annotations mapped label: plot this sample only""" fig,ax = plt.subplots(figsize=(8,8)) df = df.set_index('label') df = df._get_numeric_data() if len(df) == 1: label = df.index[0] if label != None: ax = df.T.plot(y=label,kind='pie',colormap='Spectral',autopct='%.1f%%', startangle=0, labels=None,legend=True,pctdistance=1.1, fontsize=10, ax=ax) else: ax = df.plot(kind='barh',stacked=True,linewidth=0,cmap='Spectral',ax=ax) #ax.legend(ncol=2) ax.set_position([0.2,0.1,0.6,0.8]) ax.legend(loc="best",bbox_to_anchor=(1.0, .9)) plt.title('fractions mapped') #plt.tight_layout() return fig
Example #6
Source File: plotting.py From smallrnaseq with GNU General Public License v3.0 | 6 votes |
def plot_read_count_dists(counts, h=8, n=50): """Boxplots of read count distributions """ scols,ncols = base.get_column_names(counts) df = counts.sort_values(by='mean_norm',ascending=False)[:n] df = df.set_index('name')[ncols] t = df.T w = int(h*(len(df)/60.0))+4 fig, ax = plt.subplots(figsize=(w,h)) if len(scols) > 1: sns.stripplot(data=t,linewidth=1.0,palette='coolwarm_r') ax.xaxis.grid(True) else: df.plot(kind='bar',ax=ax) sns.despine(offset=10,trim=True) ax.set_yscale('log') plt.setp(ax.xaxis.get_majorticklabels(), rotation=90) plt.ylabel('read count') #print (df.index) #plt.tight_layout() fig.subplots_adjust(bottom=0.2,top=0.9) return fig
Example #7
Source File: iris_recognition.py From GmdhPy with MIT License | 5 votes |
def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(iris.target_names)) plt.xticks(tick_marks, iris.target_names, rotation=45) plt.yticks(tick_marks, iris.target_names) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label')
Example #8
Source File: __init__.py From EDeN with MIT License | 5 votes |
def plot_confusion_matrices(y_true, y_pred, size=12): """plot_confusion_matrices.""" plt.figure(figsize=(size, size)) plt.subplot(121) plot_confusion_matrix(y_true, y_pred, normalize=False) plt.subplot(122) plot_confusion_matrix(y_true, y_pred, normalize=True) plt.tight_layout(w_pad=5) plt.show()
Example #9
Source File: prcNetwork.py From Motiftoolbox with GNU General Public License v2.0 | 5 votes |
def show(self): from pylab import figure, subplot, plot, show, tight_layout phase = np.arange(0., 2.*np.pi+0.01, 0.01) fig = figure() ax = fig.add_subplot(1, 1, 1) tight_layout() show()
Example #10
Source File: prcNetwork.py From Motiftoolbox with GNU General Public License v2.0 | 5 votes |
def plot(self, GRID=10, ax=None, **kwargs): NEWAXIS = False if ax == None: from pylab import figure, show fig = figure() ax = fig.add_subplot(111) NEWAXIS = True if "period" in kwargs: period = kwargs.pop("period") else: period = tl.PI2 phase = tl.PI2*np.arange(GRID)/float(GRID-1) phase += phase[1]/2. UV = np.asarray([ [self([phase[i], phase[j]]) for i in xrange(GRID)] # Spalten for j in xrange(GRID)]) # Zeilen X, Y = np.meshgrid(phase, phase) U, V = UV[:, :, 0], UV[:, :, 1] Q = ax.quiver(period*X/tl.PI2, period*Y/tl.PI2, U, V, units='width') for fp in self.fixedPoints: fp.plot(axis=ax, period=period) if NEWAXIS: ax.set_xlim(0., period) ax.set_ylim(0., period) fig.tight_layout() show() return Q
Example #11
Source File: spectrogram.py From spectrum with BSD 3-Clause "New" or "Revised" License | 5 votes |
def plot(self, filename=None, vmin=None, vmax=None, cmap='jet_r'): import pylab pylab.clf() pylab.imshow(-np.log10(self.results[self._start_y:,:]), origin="lower", aspect="auto", cmap=cmap, vmin=vmin, vmax=vmax) pylab.colorbar() # Fix xticks XMAX = float(self.results.shape[1]) # The max integer on xaxis xpos = list(range(0, int(XMAX), int(XMAX/5))) xx = [int(this*100)/100 for this in np.array(xpos) / XMAX * self.duration] pylab.xticks(xpos, xx, fontsize=16) # Fix yticks YMAX = float(self.results.shape[0]) # The max integer on xaxis ypos = list(range(0, int(YMAX), int(YMAX/5))) yy = [int(this) for this in np.array(ypos) / YMAX * self.sampling] pylab.yticks(ypos, yy, fontsize=16) #pylab.yticks([1000,2000,3000,4000], [5500,11000,16500,22000], fontsize=16) #pylab.title("%s echoes" % filename.replace(".png", ""), fontsize=25) pylab.xlabel("Time (seconds)", fontsize=25) pylab.ylabel("Frequence (Hz)", fontsize=25) pylab.tight_layout() if filename: pylab.savefig(filename)
Example #12
Source File: srnabench.py From smallrnaseq with GNU General Public License v3.0 | 5 votes |
def analyse_results(k,n,outpath=None): """Summarise multiple results""" if outpath != None: os.chdir(outpath) #add mirbase info k = k.merge(mirbase,left_on='name',right_on='mature1') ky1 = 'unique reads' ky2 = 'read count' #'RC' cols = ['name','freq','mean read count','mean_norm','total','perc','mirbase_id'] print print ('found:') idcols,normcols = get_column_names(k) final = filter_expr_results(k,freq=.8,meanreads=200) print (final[cols]) print ('-------------------------------') print ('%s total' %len(k)) print ('%s with >=10 mean reads' %len(k[k['mean read count']>=10])) print ('%s found in 1 sample only' %len(k[k['freq']==1])) print ('top 10 account for %2.2f' %k['perc'][:10].sum()) fig,ax = plt.subplots(nrows=1, ncols=1, figsize=(8,6)) k.set_index('name')['total'][:10].plot(kind='barh',colormap='Spectral',ax=ax,log=True) plt.tight_layout() fig.savefig('srnabench_top_known.png') #fig = plot_read_count_dists(final) #fig.savefig('srnabench_known_counts.png') fig,ax = plt.subplots(figsize=(10,6)) k[idcols].sum().plot(kind='bar',ax=ax) fig.savefig('srnabench_total_persample.png') print k.to_csv('srnabench_known_all.csv',index=False) return k
Example #13
Source File: plotting.py From smallrnaseq with GNU General Public License v3.0 | 5 votes |
def plot_sample_counts(counts): fig,ax = plt.subplots(figsize=(10,6)) scols,ncols = base.get_column_names(counts) counts[scols].sum().plot(kind='bar',ax=ax) plt.title('total counts per sample (unnormalised)') plt.tight_layout() return fig
Example #14
Source File: plotting.py From smallrnaseq with GNU General Public License v3.0 | 5 votes |
def plot_sample_variation(df): fig,axs=plt.subplots(2,1,figsize=(6,6)) axs=axs.flat cols,ncols = mirdeep2.get_column_names(m) x = m.ix[2][cols] x.plot(kind='bar',ax=axs[0]) x2 = m.ix[2][ncols] x2.plot(kind='bar',ax=axs[1]) sns.despine(trim=True,offset=10) plt.tight_layout() return fig
Example #15
Source File: analyser.py From spotpy with MIT License | 5 votes |
def plot_objectivefunctiontraces(results,evaluation,algorithms,fig_name='Like_trace.png'): import matplotlib.pyplot as plt from matplotlib import colors cnames=list(colors.cnames) font = {'family' : 'calibri', 'weight' : 'normal', 'size' : 20} plt.rc('font', **font) fig=plt.figure(figsize=(16,3)) xticks=[5000,15000] for i in range(len(results)): ax = plt.subplot(1,len(results),i+1) likes=calc_like(results[i],evaluation,spotpy.objectivefunctions.rmse) ax.plot(likes,'b-') ax.set_ylim(0,25) ax.set_xlim(0,len(results[0])) ax.set_xlabel(algorithms[i]) ax.xaxis.set_ticks(xticks) if i==0: ax.set_ylabel('RMSE') ax.yaxis.set_ticks([0,10,20]) else: ax.yaxis.set_ticks([]) plt.tight_layout() fig.savefig(fig_name)
Example #16
Source File: analyser.py From spotpy with MIT License | 5 votes |
def plot_parametertrace_algorithms(result_lists, algorithmnames, spot_setup, fig_name='parametertrace_algorithms.png'): """Example Plot as seen in the SPOTPY Documentation""" import matplotlib.pyplot as plt font = {'family' : 'calibri', 'weight' : 'normal', 'size' : 20} plt.rc('font', **font) fig=plt.figure(figsize=(17,5)) subplots=len(result_lists) parameter = spotpy.parameter.get_parameters_array(spot_setup) rows=len(parameter['name']) for j in range(rows): for i in range(subplots): ax = plt.subplot(rows,subplots,i+1+j*subplots) data=result_lists[i]['par'+parameter['name'][j]] ax.plot(data,'b-') if i==0: ax.set_ylabel(parameter['name'][j]) rep = len(data) if i>0: ax.yaxis.set_ticks([]) if j==rows-1: ax.set_xlabel(algorithmnames[i-subplots]) else: ax.xaxis.set_ticks([]) ax.plot([1]*rep,'r--') ax.set_xlim(0,rep) ax.set_ylim(parameter['minbound'][j],parameter['maxbound'][j]) #plt.tight_layout() fig.savefig(fig_name, bbox_inches='tight')
Example #17
Source File: test.py From CalculiX-Examples with MIT License | 5 votes |
def solid_plot(): # reference values, see sref=0.0924102 wref=0.000170152 # List of the element types to process (text files) eltyps=["C3D8", "C3D8R", "C3D8I", "C3D20", "C3D20R", "C3D4", "C3D10"] pylab.figure(figsize=(10, 5.0), dpi=100) pylab.subplot(1,2,1) pylab.title("Stress") # pylab.hold(True) # deprecated for elty in eltyps: data = numpy.genfromtxt(elty+".txt") pylab.plot(data[:,1],data[:,2]/sref,"o-") pylab.xscale("log") pylab.xlabel('Number of nodes') pylab.ylabel('Max $\sigma / \sigma_{\mathrm{ref}}$') pylab.grid(True) pylab.subplot(1,2,2) pylab.title("Displacement") # pylab.hold(True) # deprecated for elty in eltyps: data = numpy.genfromtxt(elty+".txt") pylab.plot(data[:,1],data[:,3]/wref,"o-") pylab.xscale("log") pylab.xlabel('Number of nodes') pylab.ylabel('Max $u / u_{\mathrm{ref}}$') pylab.ylim([0,1.2]) pylab.grid(True) pylab.legend(eltyps,loc="lower right") pylab.tight_layout() pylab.savefig("solid.svg",format="svg") # pylab.show() # Move new files and folders to 'Refs'
Example #18
Source File: mesh_viewer.py From MeshCNN with MIT License | 5 votes |
def plot_mesh(mesh, *whats, show=True, plot=None): for what in [update_plot] + list(whats): plot = what(mesh, plot) if show: li = max(plot[1][1], plot[1][3], plot[1][5]) plot[0].auto_scale_xyz([0, li], [0, li], [0, li]) pl.tight_layout() pl.show() return plot
Example #19
Source File: __init__.py From EDeN with MIT License | 5 votes |
def plot_aucs(y_true, y_score, size=12): """plot_confusion_matrices.""" plt.figure(figsize=(size, size / 2.0)) plt.subplot(121, aspect='equal') plot_roc_curve(y_true, y_score) plt.subplot(122, aspect='equal') plot_precision_recall_curve(y_true, y_score) plt.tight_layout(w_pad=5) plt.show()
Example #20
Source File: srnabench.py From smallrnaseq with GNU General Public License v3.0 | 4 votes |
def analyse_isomirs(iso,outpath=None): """Analyse isomiR results in detail""" if iso is None: return if outpath != None: os.chdir(outpath) subcols = ['name','read','isoClass','NucVar','total','freq'] iso = iso.sort_values('total', ascending=False) #filter very low abundance reads iso = iso[(iso.total>10) & (iso.freq>0.5)] top = get_top_isomirs(iso) top.to_csv('srnabench_isomirs_dominant.csv',index=False) print ('top isomiRs:') print (top[:20]) print ('%s/%s with only 1 isomir' %(len(top[top.domisoperc==1]),len(top))) print ('different dominant isomir:', len(top[top.variant!='exact'])/float(len(top))) print ('mean dom isomir perc:', top.domisoperc.mean()) print #stats fig,ax = plt.subplots(1,1) top.plot('isomirs','total',kind='scatter',logy=True,logx=True,alpha=0.8,s=50,ax=ax) ax.set_title('no. isomiRs per miRNA vs total adundance') ax.set_xlabel('no. isomiRs') ax.set_ylabel('total reads') fig.savefig('srnabench_isomir_counts.png') fig,ax = plt.subplots(1,1) #top.hist('domisoperc',bins=20,ax=ax) try: base.sns.distplot(top.domisoperc,bins=15,ax=ax,kde_kws={"lw": 2}) except: pass fig.suptitle('distribution of dominant isomiR share of reads') fig.savefig('srnabench_isomir_domperc.png') x = iso[iso.name.isin(iso.name[:28])] bins=range(15,30,1) ax = x.hist('length',bins=bins,ax=ax,by='name',sharex=True,alpha=0.9) ax[-1,-1].set_xlabel('length') fig.suptitle('isomiR length distributions') fig.savefig('srnabench_isomir_lengths.png') plt.close('all') c=iso.variant.value_counts() #c=c[c>10] fig,ax = plt.subplots(1,1,figsize=(8,8)) c.plot(kind='pie',colormap='Spectral',ax=ax, labels=None,legend=True, startangle=0,pctdistance=1.1,autopct='%.1f%%',fontsize=10) ax.set_title('isomiR class distribution') plt.tight_layout() fig.savefig('srnabench_isomir_classes.png') iso.to_csv('srnabench_isomirs_all.csv',index=False) return top
Example #21
Source File: vis_corex.py From LinearCorex with GNU Affero General Public License v3.0 | 4 votes |
def plot_rels(data, labels=None, colors=None, outfile="rels", latent=None, alpha=0.8, title=''): ns, n = data.shape if labels is None: labels = list(map(str, list(range(n)))) ncol = 5 nrow = int(np.ceil(float(n * (n - 1) / 2) / ncol)) fig, axs = pylab.subplots(nrow, ncol) fig.set_size_inches(5 * ncol, 5 * nrow) pairs = list(combinations(list(range(n)), 2)) if colors is not None: colors = (colors - np.min(colors)) / (np.max(colors) - np.min(colors)) for ax, pair in zip(axs.flat, pairs): diff_x = max(data[:, pair[0]]) - min(data[:, pair[0]]) diff_y = max(data[:, pair[1]]) - min(data[:, pair[1]]) ax.set_xlim([min(data[:, pair[0]]) - 0.05 * diff_x, max(data[:, pair[0]]) + 0.05 * diff_x]) ax.set_ylim([min(data[:, pair[1]]) - 0.05 * diff_y, max(data[:, pair[1]]) + 0.05 * diff_y]) ax.scatter(data[:, pair[0]], data[:, pair[1]], c=colors, cmap=pylab.get_cmap("jet"), marker='.', alpha=alpha, edgecolors='none', vmin=0, vmax=1) ax.set_xlabel(shorten(labels[pair[0]])) ax.set_ylabel(shorten(labels[pair[1]])) for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]: ax.scatter(data[:, 0], data[:, 1], marker='.') fig.suptitle(title, fontsize=16) pylab.rcParams['font.size'] = 12 #6 # pylab.draw() # fig.set_tight_layout(True) pylab.tight_layout() pylab.subplots_adjust(top=0.95) for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]: ax.set_visible(False) filename = outfile + '.png' if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) fig.savefig(outfile + '.png') pylab.close('all') return True # Hierarchical graph visualization utilities
Example #22
Source File: multiple_files.py From orbkit with GNU Lesser General Public License v3.0 | 4 votes |
def plot(self,mo_matrix,symmetry='1',title='All',x_label='index', y_label='MO coefficients',output_format='png', plt_dir='Plots',ylim=None,thresh=0.1,x0=0,grid=True,x_grid=None,**kwargs): '''Plots all molecular orbital coefficients of one self.symmetry.''' import pylab as plt from matplotlib.ticker import MultipleLocator import os display('Plotting data of self.symmetry %s to %s/' % (symmetry,plt_dir)) if not os.path.exists(plt_dir): os.makedirs(plt_dir) if numpy.ndim(mo_matrix) == 2: mo_matrix = mo_matrix[:,numpy.newaxis,:] shape = numpy.shape(mo_matrix) def plot_mo(i): fig=plt.figure() plt.rc('xtick', labelsize=16) plt.rc('ytick', labelsize=16) ax = plt.subplot(111) curves=[] for ij in range(shape[2]): Y = mo_matrix[:,i,ij] if x_grid is None: X = numpy.arange(len(Y))+x0 else: X = x_grid if max(numpy.abs(Y)) > thresh: curves.append(ax.plot(X,Y, '.-' ,linewidth=1.5)) plt.xlabel(x_label, fontsize=16); plt.ylabel(y_label, fontsize=16); plt.title('%s: %d.%s'% (title,i+1,symmetry)) plt.ylim(ylim) plt.tight_layout() return fig if output_format == 'pdf': from matplotlib.backends.backend_pdf import PdfPages output_fid = '%s.%s.pdf'% (title,symmetry.replace(' ','_')) display('\t%s' % output_fid) with PdfPages(os.path.join(plt_dir,output_fid)) as pdf: for i in range(shape[1]): fig = plot_mo(i) pdf.savefig(fig,**kwargs) plt.close() elif output_format == 'png': for i in range(shape[1]): fig = plot_mo(i) output_fid = '%d.%s.png' % (i+1,symmetry.replace(' ','_')) display('\t%s' % output_fid) fig.savefig(os.path.join(plt_dir, output_fid),format='png',**kwargs) plt.close() else: raise ValueError('output_format `%s` is not supported' % output_format)