Python roi_data_layer.roidb.add_bbox_regression_targets() Examples
The following are 8
code examples of roi_data_layer.roidb.add_bbox_regression_targets().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
roi_data_layer.roidb
, or try the search function
.
Example #1
Source File: train.py From rgz_rcnn with MIT License | 6 votes |
def __init__(self, sess, saver, network, imdb, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.net = network self.imdb = imdb self.roidb = roidb self.output_dir = output_dir self.pretrained_model = pretrained_model print 'Computing bounding-box regression targets...' if cfg.TRAIN.BBOX_REG: self.bbox_means, self.bbox_stds = rdl_roidb.add_bbox_regression_targets( roidb) print 'done' # For checkpoint self.saver = saver
Example #2
Source File: train.py From SubCNN with MIT License | 6 votes |
def __init__(self, solver_prototxt, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir print 'Computing bounding-box regression targets...' if cfg.TRAIN.BBOX_REG: if cfg.IS_RPN: self.bbox_means, self.bbox_stds = gdl_roidb.add_bbox_regression_targets(roidb) else: self.bbox_means, self.bbox_stds = rdl_roidb.add_bbox_regression_targets(roidb) print 'done' self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param) self.solver.net.layers[0].set_roidb(roidb)
Example #3
Source File: train.py From face-py-faster-rcnn with MIT License | 5 votes |
def __init__(self, solver_prototxt, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and cfg.TRAIN.BBOX_NORMALIZE_TARGETS): # RPN can only use precomputed normalization because there are no # fixed statistics to compute a priori assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED if cfg.TRAIN.BBOX_REG: print 'Computing bounding-box regression targets...' self.bbox_means, self.bbox_stds = \ rdl_roidb.add_bbox_regression_targets(roidb) print 'done' self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param) self.solver.net.layers[0].set_roidb(roidb)
Example #4
Source File: train.py From faster-rcnn-resnet with MIT License | 5 votes |
def __init__(self, solver_prototxt, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and cfg.TRAIN.BBOX_NORMALIZE_TARGETS): # RPN can only use precomputed normalization because there are no # fixed statistics to compute a priori assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED if cfg.TRAIN.BBOX_REG: print 'Computing bounding-box regression targets...' self.bbox_means, self.bbox_stds = \ rdl_roidb.add_bbox_regression_targets(roidb) print 'done' self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param) self.solver.net.layers[0].set_roidb(roidb)
Example #5
Source File: train.py From Faster-RCNN_TF with MIT License | 5 votes |
def __init__(self, sess, saver, network, imdb, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.net = network self.imdb = imdb self.roidb = roidb self.output_dir = output_dir self.pretrained_model = pretrained_model print 'Computing bounding-box regression targets...' if cfg.TRAIN.BBOX_REG: self.bbox_means, self.bbox_stds = rdl_roidb.add_bbox_regression_targets(roidb) print 'done' # For checkpoint self.saver = saver
Example #6
Source File: train.py From uai-sdk with Apache License 2.0 | 5 votes |
def __init__(self, solver_prototxt, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and cfg.TRAIN.BBOX_NORMALIZE_TARGETS): # RPN can only use precomputed normalization because there are no # fixed statistics to compute a priori assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED if cfg.TRAIN.BBOX_REG: print 'Computing bounding-box regression targets...' self.bbox_means, self.bbox_stds = \ rdl_roidb.add_bbox_regression_targets(roidb) print 'done' self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param) self.solver.net.layers[0].set_roidb(roidb)
Example #7
Source File: train.py From caffe-faster-rcnn-resnet-fpn with MIT License | 5 votes |
def __init__(self, solver_prototxt, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and cfg.TRAIN.BBOX_NORMALIZE_TARGETS): # RPN can only use precomputed normalization because there are no # fixed statistics to compute a priori assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED if cfg.TRAIN.BBOX_REG: print 'Computing bounding-box regression targets...' self.bbox_means, self.bbox_stds = \ rdl_roidb.add_bbox_regression_targets(roidb) print 'done' self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param) self.solver.net.layers[0].set_roidb(roidb)
Example #8
Source File: train.py From py-R-FCN with MIT License | 5 votes |
def __init__(self, solver_prototxt, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and cfg.TRAIN.BBOX_NORMALIZE_TARGETS): # RPN can only use precomputed normalization because there are no # fixed statistics to compute a priori assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED if cfg.TRAIN.BBOX_REG: print 'Computing bounding-box regression targets...' self.bbox_means, self.bbox_stds = \ rdl_roidb.add_bbox_regression_targets(roidb) print 'done' self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param) self.solver.net.layers[0].set_roidb(roidb)