Python ee.List() Examples
The following are 30
code examples of ee.List().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
ee
, or try the search function
.
Example #1
Source File: landsat_functions.py From CrisisMappingToolkit with Apache License 2.0 | 6 votes |
def rename_landsat_bands(collection, collectionName): '''Selects and renames the landsat bands we are interested in. Works with any Landsat satellite.''' # The list of bands we are interested in # - temp = temperature. Landsat8 splits this into two bands, we use the first of these. # - The panchromatic band might be nice but it is only on Landsat7/8 LANDSAT_BANDS_OF_INTEREST = ee.List(['blue', 'green', 'red', 'nir', 'swir1', 'temp', 'swir2']) # The indices where these bands are found in the Landsat satellites LANDSAT_BAND_INDICES = {'L8': ee.List([1, 2, 3, 4, 5, 9, 6]), 'L7': ee.List([0, 1, 2, 3, 4, 5, 7]), 'L5': ee.List([0, 1, 2, 3, 4, 5, 6])} landsat_index = 'L8'; if '5' in collectionName: landsat_index = 'L5' if '7' in collectionName: landsat_index = 'L7' return collection.select(LANDSAT_BAND_INDICES[landsat_index], LANDSAT_BANDS_OF_INTEREST)
Example #2
Source File: eeWishart.py From earthengine with MIT License | 6 votes |
def omnibus(imList,significance=0.0001,median=False): '''return change maps for sequential omnibus change algorithm''' imList = ee.List(imList).map(multbyenl) p = ee.Image(imList.get(0)).bandNames().length() k = imList.length() # pre-calculate p-value array ells = ee.List.sequence(1,k.subtract(1)) first = ee.Dictionary({'k':k,'p':p,'median':median,'imList':imList,'pv_arr':ee.List([])}) pv_arr = ee.List(ee.Dictionary(ells.iterate(ells_iter,first)).get('pv_arr')) # filter p-values to generate cmap, smap, fmap and bmap cmap = ee.Image(imList.get(0)).select(0).multiply(0.0) smap = ee.Image(imList.get(0)).select(0).multiply(0.0) fmap = ee.Image(imList.get(0)).select(0).multiply(0.0) bmap = ee.Image.constant(ee.List.repeat(0,k.subtract(1))) threshold = ee.Image.constant(1-significance) first = ee.Dictionary({'ell':1,'threshold':threshold,'cmap':cmap,'smap':smap,'fmap':fmap,'bmap':bmap}) return ee.Dictionary(pv_arr.iterate(filter_ell,first))
Example #3
Source File: imagecollection.py From gee_tools with MIT License | 6 votes |
def containsAllBands(collection, bands): """ Filter a collection with images cotaining all bands specified in parameter `bands` """ bands = ee.List(bands) # add bands as metadata collection = collection.map( lambda i: ee.Image(i).set('_BANDS_', ee.Image(i).bandNames())) band0 = ee.String(bands.get(0)) rest = ee.List(bands.slice(1)) filt0 = ee.Filter.listContains(leftField='_BANDS_', rightValue=band0) # Get filter def wrap(band, filt): band = ee.String(band) filt = ee.Filter(filt) newfilt = ee.Filter.listContains(leftField='_BANDS_', rightValue=band) return ee.Filter.And(filt, newfilt) filt = ee.Filter(rest.iterate(wrap, filt0)) return collection.filter(filt)
Example #4
Source File: imagecollection.py From gee_tools with MIT License | 6 votes |
def containsAnyBand(collection, bands): """ Filter a collection with images cotaining any of the bands specified in parameter `bands` """ bands = ee.List(bands) # add bands as metadata collection = collection.map( lambda i: ee.Image(i).set('_BANDS_', ee.Image(i).bandNames())) band0 = ee.String(bands.get(0)) rest = ee.List(bands.slice(1)) filt0 = ee.Filter.listContains(leftField='_BANDS_', rightValue=band0) # Get filter def wrap(band, filt): band = ee.String(band) filt = ee.Filter(filt) newfilt = ee.Filter.listContains(leftField='_BANDS_', rightValue=band) return ee.Filter.Or(filt, newfilt) filt = ee.Filter(rest.iterate(wrap, filt0)) return collection.filter(filt)
Example #5
Source File: imagecollection.py From gee_tools with MIT License | 6 votes |
def enumerateProperty(collection, name='enumeration'): """ :param collection: :param name: :return: """ enumerated = eecollection.enumerate(collection) def over_list(l): l = ee.List(l) index = ee.Number(l.get(0)) element = l.get(1) return ee.Image(element).set(name, index) imlist = enumerated.map(over_list) return ee.ImageCollection(imlist)
Example #6
Source File: app_sav.py From earthengine with MIT License | 6 votes |
def simonf(path): def sel(image): return ee.Image(image).select(['VV','VH']) images = ee.List( [ee.Image(path+'S1A_IW_GRDH_1SDV_20160305T171543_20160305T171608_010237_00F1FA_49DC'), ee.Image(path+'S1A_IW_GRDH_1SDV_20160329T171543_20160329T171608_010587_00FBF9_B4DE'), ee.Image(path+'S1A_IW_GRDH_1SDV_20160410T171538_20160410T171603_010762_010122_CEF6'), ee.Image(path+'S1A_IW_GRDH_1SDV_20160422T171539_20160422T171604_010937_010677_03F6'), ee.Image(path+'S1A_IW_GRDH_1SDV_20160504T171539_20160504T171604_011112_010BED_80AF'), ee.Image(path+'S1A_IW_GRDH_1SDV_20160516T171540_20160516T171605_011287_011198_FC21'), ee.Image(path+'S1A_IW_GRDH_1SDV_20160528T171603_20160528T171628_011462_011752_F570'), ee.Image(path+'S1A_IW_GRDH_1SDV_20160609T171604_20160609T171629_011637_011CD1_C2F5'), ee.Image(path+'S1A_IW_GRDH_1SDV_20160715T171605_20160715T171630_012162_012DA2_95A1'), ee.Image(path+'S1A_IW_GRDH_1SDV_20160727T171606_20160727T171631_012337_013359_29A6'), ee.Image(path+'S1A_IW_GRDH_1SDV_20160808T171607_20160808T171632_012512_01392E_44C4'), ee.Image(path+'S1A_IW_GRDH_1SDV_20160901T171608_20160901T171633_012862_0144E3_30E5'), ee.Image(path+'S1A_IW_GRDH_1SDV_20160925T171609_20160925T171634_013212_015050_8FDB'), ee.Image(path+'S1B_IW_GRDH_1SDV_20161001T171508_20161001T171533_002316_003E9D_D195'), ee.Image(path+'S1A_IW_GRDH_1SDV_20161007T171609_20161007T171634_013387_0155CD_F513'), ee.Image(path+'S1A_IW_GRDH_1SDV_20161019T171609_20161019T171634_013562_015B60_27FF'), ee.Image(path+'S1A_IW_GRDH_1SDV_20161031T171609_20161031T171634_013737_0160BD_4FAE') ] ) return ee.ImageCollection(images.map(sel))
Example #7
Source File: image.py From gee_tools with MIT License | 6 votes |
def _add_suffix_prefix(image, value, option, bands=None): """ Internal function to handle addPrefix and addSuffix """ if bands: bands = ee.List(bands) addon = ee.String(value) allbands = image.bandNames() bands_ = ee.List(ee.Algorithms.If(bands, bands, allbands)) def over_bands(band, first): all = ee.List(first) options = ee.Dictionary({ 'suffix': ee.String(band).cat(addon), 'prefix': addon.cat(ee.String(band)) }) return all.replace(band, ee.String(options.get(option))) newbands = bands_.iterate(over_bands, allbands) newbands = ee.List(newbands) return image.select(allbands, newbands)
Example #8
Source File: imageRetrievalFunctions.py From CrisisMappingToolkit with Apache License 2.0 | 6 votes |
def get_image_collection_landsat(bounds, start_date, end_date, collectionName='LT5_L1T'): '''Retrieve Landsat imagery for the selected location and dates.''' ee_bounds = bounds ee_points = ee.List(bounds.bounds().coordinates().get(0)) points = ee_points.getInfo() points = map(functools.partial(apply, ee.Geometry.Point), points) # collection = ee.ImageCollection(collectionName).filterDate(start_date, end_date) \ # .filterBounds(points[0]).filterBounds(points[1]) \ # .filterBounds(points[2]).filterBounds(points[3]) collection = ee.ImageCollection(collectionName).filterDate(start_date, end_date) \ .filterBounds(bounds.centroid()) # Select and rename the bands we want temp = cmt.util.landsat_functions.rename_landsat_bands(collection, collectionName) return temp.sort('system:time_start')
Example #9
Source File: image.py From gee_tools with MIT License | 6 votes |
def addMultiBands(imagesList): """ Image.addBands for many images. All bands from all images will be put together, so if there is one band with the same name in different images, the first occurrence will keep the name and the rest will have a number suffix ({band}_1, {band}_2, etc) :param imagesList: a list of images :type imagesList: list or ee.List :rtype: ee.Image """ imagesList = ee.List(imagesList) first = ee.Image(imagesList.get(0)) rest = imagesList.slice(1) def iteration(img, ini): ini = ee.Image(ini) img = ee.Image(img) return ini.addBands(img) return ee.Image(rest.iterate(iteration, first))
Example #10
Source File: list_test.py From earthengine with MIT License | 6 votes |
def testMapping(self): lst = ee.List(['foo', 'bar']) body = lambda s: ee.String(s).cat('bar') mapped = lst.map(body) self.assertTrue(isinstance(mapped, ee.List)) self.assertEquals(ee.ApiFunction.lookup('List.map'), mapped.func) self.assertEquals(lst, mapped.args['list']) # Need to do a serialized comparison for the function body because # variables returned from CustomFunction.variable() do not implement # __eq__. sig = { 'returns': 'Object', 'args': [{'name': '_MAPPING_VAR_0_0', 'type': 'Object'}] } expected_function = ee.CustomFunction(sig, body) self.assertEquals(expected_function.serialize(), mapped.args['baseAlgorithm'].serialize())
Example #11
Source File: image.py From gee_tools with MIT License | 6 votes |
def doyToDate(image, dateFormat='yyyyMMdd', year=None): """ Make a date band from a day of year band """ if not year: year = image.date().get('year') doyband = image.select([0]) leap = date.isLeap(year) limit = ee.Number(ee.Algorithms.If(leap, 365, 364)) alldoys = ee.List.sequence(1, limit) def wrap(doy, i): i = ee.Image(i) doy = ee.Number(doy) d = date.fromDOY(doy, year) date_band = ee.Image.constant(ee.Number.parse(d.format(dateFormat))) condition = i.eq(doy) return i.where(condition, date_band) datei = ee.Image(alldoys.iterate(wrap, doyband)) return datei.rename('date')
Example #12
Source File: app.py From earthengine with MIT License | 6 votes |
def iterate(image1,image2,niter,first): # simulated iteration of MAD for debugging # result = iterate(image1,image2,niter,first) for i in range(1,niter+1): result = ee.Dictionary(imad(i,first)) allrhos = ee.List(result.get('allrhos')) chi2 = ee.Image(result.get('chi2')) MAD = ee.Image(result.get('MAD')) first = ee.Dictionary({'image':image1.addBands(image2), 'allrhos':allrhos, 'chi2':chi2, 'MAD':MAD}) return result #------------------ # helper functions #------------------
Example #13
Source File: algorithms.py From gee_tools with MIT License | 5 votes |
def _rescale(image, bands=None, thermal_bands=None, original='TOA', to='SR', number='all'): """ Rescaling logic """ if not bands: bands = ['B1','B2','B3','B4','B5','B6','B7'] bands = ee.List(bands) if not thermal_bands: thermal_bands = ['B10', 'B11'] thermal_bands = ee.List(thermal_bands) allbands = bands.cat(thermal_bands) if number == '8': max_raw = 65535 else: max_raw = 255 if original == 'TOA' and to == 'SR': scaled = image.select(bands).multiply(10000).toInt16() scaled_thermal = image.select(thermal_bands).multiply(10).toInt16() elif original == 'SR' and to == 'TOA': scaled = image.select(bands).toFloat().divide(10000) scaled_thermal = image.select(thermal_bands).toFloat().divide(10) elif original == 'TOA' and to == 'RAW': scaled = tools.image.parametrize(image.select(bands), (0, 1), (0, max_raw)) scaled_thermal = tools.image.parametrize(image.select(bands), (0, 1), (0, max_raw)).multiply(1000) original_bands = image.bandNames() rest_bands = tools.ee_list.difference(original_bands, allbands) rest_image = image.select(rest_bands) return rest_image.addBands(scaled).addBands(scaled_thermal)
Example #14
Source File: image.py From gee_tools with MIT License | 5 votes |
def repeatBand(image, times=None, names=None, properties=None): """ Repeat one band. If the image parsed has more than one band, the first will be used """ band = ee.Image(image.select([0])) if times is not None: times = ee.Number(times) proxylist = ee.List.repeat(0, times.subtract(1)) def add(band, i): band = ee.Image(band) i = ee.Image(i) return i.addBands(band) proxyImg = proxylist.map(lambda n: band) repeated = ee.Image(proxyImg.iterate(add, band)) else: newNames = ee.List(names) firstName = ee.String(newNames.get(0)) rest = ee.List(newNames.slice(1)) def add(name, i): name = ee.String(name) i = ee.Image(i) return i.addBands(band.rename(name)) first = band.rename(firstName) repeated = ee.Image(rest.iterate(add, first)) if properties: repeated = repeated.setMulti(properties) return ee.Image(repeated)
Example #15
Source File: image.py From gee_tools with MIT License | 5 votes |
def sumBands(image, name="sum", bands=None): """ Adds all *bands* values and puts the result on *name*. There are 2 ways to use it: .. code:: python img = ee.Image("LANDSAT/LC8_L1T_TOA_FMASK/LC82310902013344LGN00") newimg = Image.sumBands(img, "added_bands", ("B1", "B2", "B3")) :param name: name for the band that contains the added values of bands :type name: str :param bands: names of the bands to be added. If None (default) it sums all bands :type bands: tuple :return: the parsed image with one additional band with the sum of `bands` :rtype: ee.Image """ band_names = image.bandNames() if bands is None: bn = band_names else: bn = ee.List(list(bands)) nim = ee.Image(0).select([0], [name]) # TODO: check if passed band names are in band names # DONE def sum_bands(n, ini): condition = ee.List(band_names).contains(n) return ee.Algorithms.If(condition, ee.Image(ini).add(image.select([n])), ee.Image(ini)) newimg = ee.Image(bn.iterate(sum_bands, nim)) return image.addBands(newimg)
Example #16
Source File: image.py From gee_tools with MIT License | 5 votes |
def computeBits(image, start, end, newName): """ Compute the bits of an image :param start: start bit :type start: int :param end: end bit :type end: int :param newName: new name for the band :type newName: str :return: A function which single argument is the image and returns a single band image of the extracted bits, giving the band a new name :rtype: function """ pattern = ee.Number(0) start = ee.Number(start).toInt() end = ee.Number(end).toInt() newName = ee.String(newName) seq = ee.List.sequence(start, end) def toiterate(element, ini): ini = ee.Number(ini) bit = ee.Number(2).pow(ee.Number(element)) return ini.add(bit) patt = seq.iterate(toiterate, pattern) patt = ee.Number(patt).toInt() good_pix = image.select([0], [newName]).toInt() \ .bitwiseAnd(patt).rightShift(start) return good_pix.toInt()
Example #17
Source File: cloud_mask.py From gee_tools with MIT License | 5 votes |
def decodeBitsEE(bit_reader, qa_band): """ :param bit_reader: the bit reader :type bit_reader: BitReader :param qa_band: name of the band that holds the bit information :type qa_band: str :return: a function to map over a collection. The function adds all categories masks as new bands """ options = ee.Dictionary(bit_reader.info) categories = ee.List(bit_reader.all_categories) def wrap(image): def eachcat(cat, ini): ini = ee.Image(ini) qa = ini.select(qa_band) # get data for category data = ee.Dictionary(options.get(cat)) lshift = ee.Number(data.get('lshift')) length = ee.Number(data.get('bit_length')) decoded = ee.Number(data.get('shifted')) # move = places to move bits right and left back move = lshift.add(length) # move bits right and left rest = qa.rightShift(move).leftShift(move) # subtract the rest norest = qa.subtract(rest) # right shift to compare with decoded data to_compare = norest.rightShift(lshift) ## Image # compare if is equal, return 0 if not equal, 1 if equal mask = to_compare.eq(decoded) # rename to the name of the category qa_mask = mask.select([0], [cat]) return ini.addBands(qa_mask) return ee.Image(categories.iterate(eachcat, image)) return wrap
Example #18
Source File: image.py From gee_tools with MIT License | 5 votes |
def goodPix(image, retain=None, drop=None, name='good_pix'): """ Get a 'good pixels' bands from the image's bands that retain the good pixels and drop the bad pixels. It will first retain the retainable bands and then drop the droppable ones :param image: the image :type image: ee.Image :param retain: names of the bands that hold good (want to retain) pixels, for example, a good quality band :type retain: tuple :param drop: names of the bands that hold bad (want to drop) pixels, for example a cloud mask band :type drop: tuple :param name: name for the resulting band :type name: str :rtype: ee.Image """ to_retain = ee.List(retain) to_drop = ee.List(drop) def make_or(bandname, ini): ini = ee.Image(ini) band = image.select(bandname) return ini.Or(band) final_retain = ee.Image(to_retain.iterate(make_or, empty(0))) final_drop = ee.Image(to_drop.iterate(make_or, empty(0))) # not bad but not good (retain) not_bad_not_good = final_drop.And(final_retain) final = not_bad_not_good.bitwiseXor(final_drop) return final.select([0], [name])
Example #19
Source File: image.py From gee_tools with MIT License | 5 votes |
def removeBands(image, bands): """ Remove the specified bands from an image """ bnames = image.bandNames() bands = ee.List(bands) inter = ee_list.intersection(bnames, bands) diff = bnames.removeAll(inter) return image.select(diff)
Example #20
Source File: utils.py From gee_tools with MIT License | 5 votes |
def reduceRegionsPandas(data, index='system:index', add_coordinates=False, duplicate_index=False): """ Transform data coming from Image.reduceRegions to a pandas dataframe :param data: data coming from Image.reduceRegions :type data: ee.Dictionary or dict :param index: the index of the dataframe :param add_coordinates: if True adds the coordinates to the dataframe :param duplicate_index: if True adds the index data to the dataframe too :return: a pandas dataframe :rtype: pd.DataFrame """ if not isinstance(data, dict): if add_coordinates: def addCentroid(feat): feat = ee.Feature(feat) centroid = feat.centroid().geometry() coords = ee.List(centroid.coordinates()) return feat.set('longitude', ee.Number(coords.get(0)), 'latitude', ee.Number(coords.get(1))) data = data.map(addCentroid) data = data.getInfo() features = data['features'] d, indexes = [], [] for feature in features: nf = deepcopy(feature) props = nf['properties'] if not duplicate_index: props.pop(index) if index in props else props d.append(props) if index == 'system:index': indexes.append(feature['id']) else: indexes.append(feature['properties'][index]) return pd.DataFrame(d, indexes)
Example #21
Source File: image.py From gee_tools with MIT License | 5 votes |
def applyMask(image, mask, bands=None, negative=True): """ Apply a passed positive mask """ bands = bands or mask.bandNames() bands = ee.List(bands) def wrap(band, img): img = ee.Image(img) band = ee.String(band) m = mask.select(band) toapply = m.Not() if negative else m return img.updateMask(toapply) return ee.Image(bands.iterate(wrap, image))
Example #22
Source File: algorithms.py From gee_tools with MIT License | 5 votes |
def harmonization(image, blue='B2', green='B3', red='B4', nir='B5', swir='B6', swir2='B7', max_value=None): """ Harmonization of Landsat 8 images to be consistant with Landsat 7 images Roy, D.P., Kovalskyy, V., Zhang, H.K., Vermote, E.F., Yan, L., Kumar, S.S, Egorov, A., 2016, Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity, Remote Sensing of Environment, 185, 57-70. (http://dx.doi.org/10.1016/j.rse.2015.12.024) Table 2 - reduced major axis (RMA) regression coefficients :param image: A Landsat 8 Image :param max_value: the maximum value for the optical bands. For float bands it is 1 (TOA), for int16 it is 10000 (SR) and for int8 it is 255 (RAW). It default to 1 (TOA) :return: """ bands = ee.List([blue, green, red, nir, swir, swir2]) band_types = image.bandTypes().select(bands) if max_value is None: max_value = 1 slopes = ee.Image.constant([0.9785, 0.9542, 0.9825, 1.0073, 1.0171, 0.9949]) itcp = ee.Image.constant([-0.0095, -0.0016, -0.0022, -0.0021, -0.0030, 0.0029]) only_bands = image.select(bands) resampled = only_bands.resample('bicubic') harmonized = resampled.subtract(itcp.multiply(max_value)).divide(slopes) harmonized = harmonized.cast(band_types) # append rest of the bands return image.addBands(harmonized, overwrite=True)
Example #23
Source File: list_test.py From aqua-monitor with GNU Lesser General Public License v3.0 | 5 votes |
def testInternals(self): """Test eq(), ne() and hash().""" a = ee.List([1, 2]) b = ee.List([2, 1]) c = ee.List([1, 2]) self.assertTrue(a.__eq__(a)) self.assertFalse(a.__eq__(b)) self.assertTrue(a.__eq__(c)) self.assertTrue(b.__ne__(c)) self.assertNotEquals(a.__hash__(), b.__hash__()) self.assertEquals(a.__hash__(), c.__hash__())
Example #24
Source File: collection.py From openet-ssebop-beta with Apache License 2.0 | 5 votes |
def overpass(self, variables=None): """Return a collection of computed values for the overpass images Parameters ---------- variables : list, optional List of variables that will be returned in the Image Collection. If variables is not set here it must be specified in the class instantiation call. Returns ------- ee.ImageCollection Raises ------ ValueError """ # Does it make sense to use the class variable list if not set? if not variables: if self.variables: variables = self.variables else: raise ValueError('variables parameter must be set') return self._build(variables=variables)
Example #25
Source File: lake_measure.py From CrisisMappingToolkit with Apache License 2.0 | 5 votes |
def detect_water(image): global collection_dict, sensor_band_dict#, spacecraft_dict shadowSumBands = ee.List(['nir','swir1','swir2'])# Bands for shadow masking # Compute several indicators of water and take the minimum of them. score = ee.Image(1.0) # Set up some params darkBands = ['green','red','nir','swir2','swir1']# ,'nir','swir1','swir2'] brightBand = 'blue' # Water tends to be dark sum = image.select(shadowSumBands).reduce(ee.Reducer.sum()) sum = rescale(sum,'img',[0.35,0.2]).clamp(0,1) score = score.min(sum) # It also tends to be relatively bright in the blue band mean = image.select(darkBands).reduce(ee.Reducer.mean()) std = image.select(darkBands).reduce(ee.Reducer.stdDev()) z = (image.select([brightBand]).subtract(std)).divide(mean) z = rescale(z,'img',[0,1]).clamp(0,1) score = score.min(z) # Water is at or above freezing score = score.min(rescale(image, 'img.temp', [273, 275])) # Water is nigh in ndsi (aka mndwi) ndsi = image.normalizedDifference(['green', 'swir1']) ndsi = rescale(ndsi, 'img', [0.3, 0.8]) score = score.min(ndsi) return score.clamp(0,1)
Example #26
Source File: imagecollection_test.py From aqua-monitor with GNU Lesser General Public License v3.0 | 5 votes |
def testImageCollectionConstructors(self): """Verifies that constructors understand valid parameters.""" from_id = ee.ImageCollection('abcd') self.assertEquals(ee.ApiFunction.lookup('ImageCollection.load'), from_id.func) self.assertEquals({'id': 'abcd'}, from_id.args) from_images = ee.ImageCollection([ee.Image(1), ee.Image(2)]) self.assertEquals(ee.ApiFunction.lookup('ImageCollection.fromImages'), from_images.func) self.assertEquals({'images': [ee.Image(1), ee.Image(2)]}, from_images.args) self.assertEquals(ee.ImageCollection([ee.Image(1)]), ee.ImageCollection(ee.Image(1))) original = ee.ImageCollection('foo') from_other_image_collection = ee.ImageCollection(original) self.assertEquals(from_other_image_collection, original) l = ee.List([ee.Image(1)]).slice(0) from_list = ee.ImageCollection(l) self.assertEquals({'images': l}, from_list.args) from_computed_object = ee.ImageCollection( ee.ComputedObject(None, {'x': 'y'})) self.assertEquals({'x': 'y'}, from_computed_object.args)
Example #27
Source File: image_test.py From aqua-monitor with GNU Lesser General Public License v3.0 | 5 votes |
def testRename(self): """Verifies image.rename varargs handling.""" image = ee.Image([1, 2]).rename('a', 'b') self.assertEquals(ee.ApiFunction.lookup('Image.rename'), image.func) self.assertEquals(ee.List(['a', 'b']), image.args['names']) image = ee.Image([1, 2]).rename(['a', 'b']) self.assertEquals(ee.ApiFunction.lookup('Image.rename'), image.func) self.assertEquals(ee.List(['a', 'b']), image.args['names'])
Example #28
Source File: 3_water_class_transition.py From qgis-earthengine-examples with MIT License | 5 votes |
def createPieChartSliceDictionary(fc): return ee.List(fc.aggregate_array("transition_class_palette")) \ .map(lambda p: {'color': p}).getInfo() ############################### # Calculations ############################### # Create a dictionary for looking up names of transition classes.
Example #29
Source File: image_test.py From aqua-monitor with GNU Lesser General Public License v3.0 | 5 votes |
def testCombine(self): """Verifies the behavior of ee.Image.combine_().""" image1 = ee.Image([1, 2]) image2 = ee.Image([3, 4]) combined = ee.Image.combine_([image1, image2], ['a', 'b', 'c', 'd']) self.assertEquals(ee.ApiFunction.lookup('Image.select'), combined.func) self.assertEquals(ee.List(['.*']), combined.args['bandSelectors']) self.assertEquals(ee.List(['a', 'b', 'c', 'd']), combined.args['newNames']) self.assertEquals(ee.ApiFunction.lookup('Image.addBands'), combined.args['input'].func) self.assertEquals({'dstImg': image1, 'srcImg': image2}, combined.args['input'].args)
Example #30
Source File: image_test.py From aqua-monitor with GNU Lesser General Public License v3.0 | 5 votes |
def testSelect(self): """Verifies regression in the behavior of empty ee.Image.select().""" image = ee.Image([1, 2]).select() self.assertEquals(ee.ApiFunction.lookup('Image.select'), image.func) self.assertEquals(ee.List([]), image.args['bandSelectors'])