Python dill.load() Examples
The following are 30
code examples of dill.load().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
dill
, or try the search function
.
Example #1
Source File: simple.py From learning2run with MIT License | 7 votes |
def load(path, num_cpu=16): """Load act function that was returned by learn function. Parameters ---------- path: str path to the act function pickle num_cpu: int number of cpus to use for executing the policy Returns ------- act: ActWrapper function that takes a batch of observations and returns actions. """ return ActWrapper.load(path, num_cpu=num_cpu)
Example #2
Source File: deferred.py From toil with Apache License 2.0 | 6 votes |
def _runAllDeferredFunctions(self, fileObj): """ Read and run deferred functions until EOF from the given open file. """ try: while True: # Load each function deferredFunction = dill.load(fileObj) logger.debug("Loaded deferred function %s" % repr(deferredFunction)) # Run it self._runDeferredFunction(deferredFunction) except EOFError as e: # This is expected and means we read all the complete entries. logger.debug("Out of deferred functions!") pass
Example #3
Source File: base.py From batchflow with Apache License 2.0 | 6 votes |
def __init__(self, *args, **kwargs): self.full_config = Config() self.session = kwargs.get('session', None) self.graph = tf.Graph() if self.session is None else self.session.graph self._graph_context = None self._train_lock = threading.Lock() # Parameters of batch processing: splitting batches into parts and/or using multiple devices to process data self.microbatch = None self.devices = [] self.leading_device = None self.device_to_scope = {} self.scope_to_device = {} self.multi_device = False # Private storage for often used tensors self._attrs = dict() # Save/load things self._saver = None self.preserve = ['_attrs', 'microbatch', 'devices', 'leading_device', 'device_to_scope', 'scope_to_device', 'multi_device'] super().__init__(*args, **kwargs)
Example #4
Source File: research.py From batchflow with Apache License 2.0 | 6 votes |
def __init__(self): self.executables = OrderedDict() self.loaded = False # TODO: Think about it. Do we need load? self.branches = 1 self.trials = 2 self.workers = 1 self.bar = False self.name = 'research' self.worker_class = PipelineWorker self.devices = None self.domain = None self.n_iters = None self.timeout = 5 self.n_configs = None self.n_reps = None self.n_configs = None self.repeat_each = None self.logger = FileLogger() # update parameters for config. None or dict with keys (function, params, cache) self._update_config = None # update parameters for domain. None or dict with keys (function, each) self._update_domain = None self.n_updates = 0
Example #5
Source File: procedure_continuous_tasks.py From action-branching-agents with MIT License | 6 votes |
def load(path, num_cpu=16): """Load act function that was returned by learn function. Parameters ---------- path: str path to the act function pickle num_cpu: int number of cpus to use for executing the policy Returns ------- act: ActWrapper function that takes a batch of observations and returns actions. """ return ActWrapper.load(path, num_cpu=num_cpu)
Example #6
Source File: simple.py From rl-attack with MIT License | 6 votes |
def load(path, num_cpu=16): """Load act function that was returned by learn function. Parameters ---------- path: str path to the act function pickle num_cpu: int number of cpus to use for executing the policy Returns ------- act: ActWrapper function that takes a batch of observations and returns actions. """ return ActWrapper.load(path, num_cpu=num_cpu)
Example #7
Source File: celery.py From flask-unchained with MIT License | 6 votes |
def _register_dill(self): def encode(obj, dumper=dill_dumps): return dumper(obj, protocol=pickle_protocol) def decode(s): return pickle_loads(str_to_bytes(s), load=dill_load) registry.register( name='dill', encoder=encode, decoder=decode, content_type='application/x-python-serialize', content_encoding='binary' ) # the same as upstream, but we need to copy it here so we can access it
Example #8
Source File: simple.py From rl-attack-detection with MIT License | 6 votes |
def load(path, num_cpu=16): """Load act function that was returned by learn function. Parameters ---------- path: str path to the act function pickle num_cpu: int number of cpus to use for executing the policy Returns ------- act: ActWrapper function that takes a batch of observations and returns actions. """ return ActWrapper.load(path, num_cpu=num_cpu)
Example #9
Source File: dqfd.py From A-Guide-to-DeepMinds-StarCraft-AI-Environment with Apache License 2.0 | 6 votes |
def load(path, act_params, num_cpu=16): """Load act function that was returned by learn function. Parameters ---------- path: str path to the act function pickle num_cpu: int number of cpus to use for executing the policy Returns ------- act: ActWrapper function that takes a batch of observations and returns actions. """ return ActWrapper.load(path, num_cpu=num_cpu, act_params=act_params)
Example #10
Source File: deepq_mineral_shards.py From A-Guide-to-DeepMinds-StarCraft-AI-Environment with Apache License 2.0 | 6 votes |
def load(path, act_params, num_cpu=16): """Load act function that was returned by learn function. Parameters ---------- path: str path to the act function pickle num_cpu: int number of cpus to use for executing the policy Returns ------- act: ActWrapper function that takes a batch of observations and returns actions. """ return ActWrapper.load(path, num_cpu=num_cpu, act_params=act_params)
Example #11
Source File: base_model.py From MatchZoo with Apache License 2.0 | 6 votes |
def load_embedding_matrix( self, embedding_matrix: np.ndarray, name: str = 'embedding' ): """ Load an embedding matrix. Load an embedding matrix into the model's embedding layer. The name of the embedding layer is specified by `name`. For models with only one embedding layer, set `name='embedding'` when creating the keras layer, and use the default `name` when load the matrix. For models with more than one embedding layers, initialize keras layer with different layer names, and set `name` accordingly to load a matrix to a chosen layer. :param embedding_matrix: Embedding matrix to be loaded. :param name: Name of the layer. (default: 'embedding') """ self.get_embedding_layer(name).set_weights([embedding_matrix])
Example #12
Source File: test_lambda.py From lambdify with Apache License 2.0 | 6 votes |
def test_create(self, mock): value = 1 function_name = 'test_function' @Lambda(name=function_name, bucket='test', key='test', client=self.client) def foo(): return value package = DeploymentPackage(foo) zfp = zipfile.ZipFile(StringIO(package.zip_bytes(foo.dumped_code)), "r") func = dill.load(zfp.open('.lambda.dump')) self.assertEqual(func(), value) resp_create = foo.create() self.assertEqual(resp_create['FunctionName'], function_name) # moto doesn't support ZipFile only lambda deployments, while # aws doen't allow other arguments when scpesifying ZipFile argument #resp_get = foo.get() #self.assertEqual(resp_get['Configuration']['FunctionName'], function_name)
Example #13
Source File: train.py From attention-is-all-you-need-pytorch with MIT License | 6 votes |
def prepare_dataloaders(opt, device): batch_size = opt.batch_size data = pickle.load(open(opt.data_pkl, 'rb')) opt.max_token_seq_len = data['settings'].max_len opt.src_pad_idx = data['vocab']['src'].vocab.stoi[Constants.PAD_WORD] opt.trg_pad_idx = data['vocab']['trg'].vocab.stoi[Constants.PAD_WORD] opt.src_vocab_size = len(data['vocab']['src'].vocab) opt.trg_vocab_size = len(data['vocab']['trg'].vocab) #========= Preparing Model =========# if opt.embs_share_weight: assert data['vocab']['src'].vocab.stoi == data['vocab']['trg'].vocab.stoi, \ 'To sharing word embedding the src/trg word2idx table shall be the same.' fields = {'src': data['vocab']['src'], 'trg':data['vocab']['trg']} train = Dataset(examples=data['train'], fields=fields) val = Dataset(examples=data['valid'], fields=fields) train_iterator = BucketIterator(train, batch_size=batch_size, device=device, train=True) val_iterator = BucketIterator(val, batch_size=batch_size, device=device) return train_iterator, val_iterator
Example #14
Source File: core.py From jaxnet with Apache License 2.0 | 5 votes |
def load(path: Path): with path.open('rb') as file: return dill.load(file)
Example #15
Source File: nonCachingFileStore.py From toil with Apache License 2.0 | 5 votes |
def _readJobState(jobStateFileName): with open(jobStateFileName, 'rb') as fH: state = dill.load(fH) return state
Example #16
Source File: abstractFileStore.py From toil with Apache License 2.0 | 5 votes |
def _load(cls, fileName): """ Load the state of the cache from the state file :param str fileName: Path to the cache state file. :return: An instance of the state as a namespace. :rtype: _StateFile """ # Read the value from the cache state file then initialize and instance of # _CacheState with it. with open(fileName, 'rb') as fH: infoDict = dill.load(fH) return cls(infoDict)
Example #17
Source File: utils_models.py From auto_ml with MIT License | 5 votes |
def insert_deep_learning_model(pipeline_step, file_name): # This is where we saved the random_name for this model random_name = pipeline_step.model # Load the Keras model here keras_file_name = file_name[:-5] + random_name + '_keras_deep_learning_model.h5' model = keras_load_model(keras_file_name) # Put the model back in place so that we can still use it to get predictions without having to load it back in from disk return model
Example #18
Source File: __init__.py From lifetimes with MIT License | 5 votes |
def load_model(self, path): """ Load model with dill package. Parameters ---------- path: str From what path load model. """ with open(path, "rb") as in_file: self.__dict__.update(dill.load(in_file).__dict__)
Example #19
Source File: train.py From aivivn-tone with MIT License | 5 votes |
def resume_in_parts(self, train_parts, val, val_iterator, batch_size, save_path): checkpoint = torch.load(save_path) self.model.load_state_dict(checkpoint["model_state_dict"]) self.model.to(device) self.optimizer.load_state_dict(checkpoint["optimizer_state_dict"]) self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"]) start_epoch = checkpoint["epoch"] + 1 self.train_in_parts(train_parts, val, val_iterator, batch_size, start_epoch=start_epoch)
Example #20
Source File: utils_models.py From auto_ml with MIT License | 5 votes |
def load_ml_model(file_name): with open(file_name, 'rb') as read_file: base_pipeline = dill.load(read_file) if isinstance(base_pipeline, utils_categorical_ensembling.CategoricalEnsembler): for step in base_pipeline.transformation_pipeline.named_steps: pipeline_step = base_pipeline.transformation_pipeline.named_steps[step] try: if pipeline_step.get('model_name', 'reallylongnonsensicalstring')[:12] == 'DeepLearning': pipeline_step.model = insert_deep_learning_model(pipeline_step, file_name) except AttributeError: pass for step in base_pipeline.trained_models: pipeline_step = base_pipeline.trained_models[step] try: if pipeline_step.get('model_name', 'reallylongnonsensicalstring')[:12] == 'DeepLearning': pipeline_step.model = insert_deep_learning_model(pipeline_step, file_name) except AttributeError: pass else: for step in base_pipeline.named_steps: pipeline_step = base_pipeline.named_steps[step] try: if pipeline_step.get('model_name', 'reallylongnonsensicalstring')[:12] == 'DeepLearning': pipeline_step.model = insert_deep_learning_model(pipeline_step, file_name) except AttributeError: pass return base_pipeline # Keeping this here for legacy support
Example #21
Source File: feature_sampler.py From VerifAI with BSD 3-Clause "New" or "Revised" License | 5 votes |
def restoreFromFile(path): with open(path, 'rb') as infile: allState = dill.load(infile) randState, numpyRandState, sampler = allState random.setstate(randState) np.random.set_state(numpyRandState) return sampler
Example #22
Source File: utils.py From bootcamp with Apache License 2.0 | 5 votes |
def load_pickle(file): if not os.path.exists(file): return None logger.info(f'Loading PKL file: {file}.') with open(file, 'rb') as r: return dill.load(r)
Example #23
Source File: Process.py From Transformer with Apache License 2.0 | 5 votes |
def create_fields(opt): spacy_langs = ['en', 'fr', 'de', 'es', 'pt', 'it', 'nl'] if opt.src_lang not in spacy_langs: print('invalid src language: ' + opt.src_lang + 'supported languages : ' + spacy_langs) if opt.trg_lang not in spacy_langs: print('invalid trg language: ' + opt.trg_lang + 'supported languages : ' + spacy_langs) print("loading spacy tokenizers...") t_src = tokenize(opt.src_lang) t_trg = tokenize(opt.trg_lang) TRG = data.Field(lower=True, tokenize=t_trg.tokenizer, init_token='<sos>', eos_token='<eos>') SRC = data.Field(lower=True, tokenize=t_src.tokenizer) if opt.load_weights is not None: try: print("loading presaved fields...") SRC = pickle.load(open(f'{opt.load_weights}/SRC.pkl', 'rb')) TRG = pickle.load(open(f'{opt.load_weights}/TRG.pkl', 'rb')) except: print("error opening SRC.pkl and TXT.pkl field files, please ensure they are in " + opt.load_weights + "/") quit() return(SRC, TRG)
Example #24
Source File: tv.py From Kairos with GNU General Public License v3.0 | 5 votes |
def get_browser_instance(browser=None): result = browser if os.path.exists(FILENAME): result = dill.load(open(FILENAME, 'rb')) return result
Example #25
Source File: procedure_continuous_tasks.py From action-branching-agents with MIT License | 5 votes |
def load(path, num_cpu=16): with open(path, "rb") as f: model_data, act_params = dill.load(f) act = deepq.build_act(**act_params) sess = U.make_session(num_cpu=num_cpu) sess.__enter__() with tempfile.TemporaryDirectory() as td: arc_path = os.path.join(td, "packed.zip") with open(arc_path, "wb") as f: f.write(model_data) zipfile.ZipFile(arc_path, 'r', zipfile.ZIP_DEFLATED).extractall(td) U.load_state(os.path.join(td, "model")) return ActWrapper(act, act_params)
Example #26
Source File: serialization.py From kubeface with Apache License 2.0 | 5 votes |
def load(fd): return dill.load(fd)
Example #27
Source File: fileIO.py From bayesloop with MIT License | 5 votes |
def load(filename): """ Load an instance of a bayesloop study class that was saved using the bayesloop.save() function. Args: filename(str): Path + filename to stored bayesloop study Returns: Study instance """ with open(filename, 'rb') as f: S = dill.load(f) print('+ Successfully loaded study.') return S
Example #28
Source File: base_preprocessor.py From MatchZoo with Apache License 2.0 | 5 votes |
def load_preprocessor(dirpath: typing.Union[str, Path]) -> 'mz.DataPack': """ Load the fitted `context`. The reverse function of :meth:`save`. :param dirpath: directory path of the saved model. :return: a :class:`DSSMPreprocessor` instance. """ dirpath = Path(dirpath) data_file_path = dirpath.joinpath(BasePreprocessor.DATA_FILENAME) return dill.load(open(data_file_path, 'rb'))
Example #29
Source File: data_pack.py From MatchZoo with Apache License 2.0 | 5 votes |
def load_data_pack(dirpath: typing.Union[str, Path]) -> DataPack: """ Load a :class:`DataPack`. The reverse function of :meth:`save`. :param dirpath: directory path of the saved model. :return: a :class:`DataPack` instance. """ dirpath = Path(dirpath) data_file_path = dirpath.joinpath(DataPack.DATA_FILENAME) dp = dill.load(open(data_file_path, 'rb')) return dp
Example #30
Source File: base_model.py From MatchZoo with Apache License 2.0 | 5 votes |
def load_model(dirpath: typing.Union[str, Path]) -> BaseModel: """ Load a model. The reverse function of :meth:`BaseModel.save`. :param dirpath: directory path of the saved model :return: a :class:`BaseModel` instance Example: >>> import matchzoo as mz >>> model = mz.models.Naive() >>> model.guess_and_fill_missing_params(verbose=0) >>> model.build() >>> model.save('my-model') >>> model.params.keys() == mz.load_model('my-model').params.keys() True >>> import shutil >>> shutil.rmtree('my-model') """ dirpath = Path(dirpath) params_path = dirpath.joinpath(BaseModel.PARAMS_FILENAME) weights_path = dirpath.joinpath(BaseModel.BACKEND_WEIGHTS_FILENAME) with open(params_path, mode='rb') as params_file: params = dill.load(params_file) model_instance = params['model_class'](params=params) model_instance.build() model_instance.compile() model_instance.backend.load_weights(weights_path) return model_instance