Python lasagne.layers.get_output() Examples
The following are 30
code examples of lasagne.layers.get_output().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
lasagne.layers
, or try the search function
.
Example #1
Source File: test_layers_theano.py From visual_dynamics with MIT License | 6 votes |
def test_conv2d(x_shape, num_filters, filter_size, flip_filters, batch_size=2): X_var = T.tensor4('X') l_x = L.InputLayer(shape=(None,) + x_shape, input_var=X_var, name='x') X = np.random.random((batch_size,) + x_shape).astype(theano.config.floatX) l_conv = L.Conv2DLayer(l_x, num_filters, filter_size=filter_size, stride=1, pad='same', flip_filters=flip_filters, untie_biases=True, nonlinearity=None, b=None) conv_var = L.get_output(l_conv) conv_fn = theano.function([X_var], conv_var) tic() conv = conv_fn(X) toc("conv time for x_shape=%r, num_filters=%r, filter_size=%r, flip_filters=%r, batch_size=%r\n\t" % (x_shape, num_filters, filter_size, flip_filters, batch_size)) tic() loop_conv = conv2d(X, l_conv.W.get_value(), flip_filters=flip_filters) toc("loop conv time for x_shape=%r, num_filters=%r, filter_size=%r, flip_filters=%r, batch_size=%r\n\t" % (x_shape, num_filters, filter_size, flip_filters, batch_size)) assert np.allclose(conv, loop_conv, atol=1e-6)
Example #2
Source File: lasagne_net.py From BirdCLEF-Baseline with MIT License | 6 votes |
def test_function(net, hasTargets=True, layer_index=-1): # We need the prediction function to calculate the validation accuracy # this way we can test the net during/after training # We need a version with targets and one without prediction = l.get_output(l.get_all_layers(net)[layer_index], deterministic=True) log.i("COMPILING TEST FUNCTION...", new_line=False) start = time.time() if hasTargets: # Theano variable for the class targets targets = T.matrix('targets', dtype=theano.config.floatX) loss = loss_function(net, prediction, targets) accuracy = accuracy_function(net, prediction, targets) test_net = theano.function([l.get_all_layers(net)[0].input_var, targets], [prediction, loss, accuracy], allow_input_downcast=True) else: test_net = theano.function([l.get_all_layers(net)[0].input_var], prediction, allow_input_downcast=True) log.i(("DONE! (", int(time.time() - start), "s )")) return test_net
Example #3
Source File: lasagne_net.py From BirdCLEF-Baseline with MIT License | 6 votes |
def train_function(net): # We use dynamic learning rates which change after some epochs lr_dynamic = T.scalar(name='learning_rate') # Theano variable for the class targets targets = T.matrix('targets', dtype=theano.config.floatX) # Get the network output prediction = l.get_output(net) # The theano train functions takes images and class targets as input log.i("COMPILING TRAIN FUNCTION...", new_line=False) start = time.time() loss = loss_function(net, prediction, targets) updates = net_updates(net, loss, lr_dynamic) train_net = theano.function([l.get_all_layers(net)[0].input_var, targets, lr_dynamic], loss, updates=updates, allow_input_downcast=True) log.i(("DONE! (", int(time.time() - start), "s )")) return train_net ################# PREDICTION FUNCTION ####################
Example #4
Source File: init_policy.py From pixelworld with MIT License | 6 votes |
def dist_info_sym(self, obs_var, state_info_vars): n_batches, n_steps = obs_var.shape[:2] obs_var = obs_var.reshape((n_batches, n_steps, -1)) if self._state_include_action: prev_action_var = state_info_vars["prev_action"] all_input_var = TT.concatenate( [obs_var, prev_action_var], axis=2 ) else: all_input_var = obs_var return dict( prob=L.get_output( self._prob_network.output_layer, {self._prob_network.input_layer: all_input_var} ) )
Example #5
Source File: neuralforestlayer.py From ShallowNeuralDecisionForest with MIT License | 6 votes |
def __init__(self, incoming, depth, n_estimators, n_outputs, pi_iters, **kwargs): self._incoming = incoming self._depth = depth self._n_estimators = n_estimators self._n_outputs = n_outputs self._pi_iters = pi_iters super(NeuralForestLayer, self).__init__(incoming, **kwargs) pi_init = Constant(val=1.0 / n_outputs)(((1 << (depth - 1)) * n_estimators, n_outputs)) pi_name = "%s.%s" % (self.name, 'pi') if self.name is not None else 'pi' self.pi = theano.shared(pi_init, name=pi_name) # what we want to do here is pi / pi.sum(axis=1) # to be safe, if certain rows only contain zeroes (for some pi all y's became 0), # replace such row with 1/n_outputs sum_pi_over_y = self.pi.sum(axis=1).dimshuffle(0, 'x') all_0_y = T.eq(sum_pi_over_y, 0) norm_pi_body = (self.pi + all_0_y * (1.0 / n_outputs)) / (sum_pi_over_y + all_0_y) self.normalize_pi = theano.function([], [], updates=[(self.pi, norm_pi_body)]) self.update_pi_one_iter = self.get_update_pi_one_iter_func() self.normalize_pi() t_input = T.matrix('t_input') self.f_leaf_proba = theano.function([t_input], self.get_probabilities_for(get_output(incoming, t_input)))
Example #6
Source File: conv_sup_cc_lbp.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def make_training_functions(network, encode_layer, input_var, aug_var, fea_var, target_var): prediction = layers.get_output(network); loss = lasagne.objectives.binary_crossentropy(prediction, target_var).mean(); params = layers.get_all_params(network, trainable=True); updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=0.0005, momentum=0.975); encode = lasagne.layers.get_output(encode_layer, deterministic=True); test_output = lasagne.layers.get_output(network, deterministic=True); test_output = lasagne.layers.get_output(network, deterministic=True); test_loss = lasagne.objectives.binary_crossentropy(test_output, target_var).mean(); val_fn = theano.function([input_var, aug_var, fea_var, target_var], [test_loss, encode, test_output]); train_fn = theano.function([input_var, aug_var, fea_var, target_var], loss, updates=updates); return train_fn, val_fn;
Example #7
Source File: conv_sup_cc.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def make_training_functions(network, encode_layer, input_var, aug_var, target_var): prediction = layers.get_output(network); loss = lasagne.objectives.binary_crossentropy(prediction, target_var).mean(); params = layers.get_all_params(network, trainable=True); updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=0.0005, momentum=0.975); encode = lasagne.layers.get_output(encode_layer, deterministic=True); test_output = lasagne.layers.get_output(network, deterministic=True); test_output = lasagne.layers.get_output(network, deterministic=True); test_loss = lasagne.objectives.binary_crossentropy(test_output, target_var).mean(); val_fn = theano.function([input_var, aug_var, target_var], [test_loss, encode, test_output]); train_fn = theano.function([input_var, aug_var, target_var], loss, updates=updates); return train_fn, val_fn;
Example #8
Source File: net_theano.py From visual_dynamics with MIT License | 6 votes |
def build_bilinear_net(input_shapes, X_var=None, U_var=None, X_diff_var=None, axis=1): x_shape, u_shape = input_shapes X_var = X_var or T.tensor4('X') U_var = U_var or T.matrix('U') X_diff_var = X_diff_var or T.tensor4('X_diff') X_next_var = X_var + X_diff_var l_x = L.InputLayer(shape=(None,) + x_shape, input_var=X_var) l_u = L.InputLayer(shape=(None,) + u_shape, input_var=U_var) l_x_diff_pred = LT.BilinearLayer([l_x, l_u], axis=axis) l_x_next_pred = L.ElemwiseMergeLayer([l_x, l_x_diff_pred], T.add) l_y = L.flatten(l_x) l_y_diff_pred = L.flatten(l_x_diff_pred) X_next_pred_var = lasagne.layers.get_output(l_x_next_pred) loss = ((X_next_var - X_next_pred_var) ** 2).mean(axis=0).sum() / 2. net_name = 'BilinearNet' input_vars = OrderedDict([(var.name, var) for var in [X_var, U_var, X_diff_var]]) pred_layers = OrderedDict([('y_diff_pred', l_y_diff_pred), ('y', l_y), ('x0_next_pred', l_x_next_pred)]) return net_name, input_vars, pred_layers, loss
Example #9
Source File: test_layers_theano.py From visual_dynamics with MIT License | 6 votes |
def test_channelwise_locally_connected2d(x_shape, filter_size, flip_filters, batch_size=2): X_var = T.tensor4('X') l_x = L.InputLayer(shape=(None,) + x_shape, input_var=X_var, name='x') X = np.random.random((batch_size,) + x_shape).astype(theano.config.floatX) l_conv = LT.LocallyConnected2DLayer(l_x, x_shape[0], filter_size=filter_size, channelwise=True, stride=1, pad='same', flip_filters=flip_filters, untie_biases=True, nonlinearity=None, b=None) conv_var = L.get_output(l_conv) conv_fn = theano.function([X_var], conv_var) tic() conv = conv_fn(X) toc("channelwise locally connected time for x_shape=%r, filter_size=%r, flip_filters=%r, batch_size=%r\n\t" % (x_shape, filter_size, flip_filters, batch_size)) tic() loop_conv = channelwise_locally_connected2d(X, l_conv.W.get_value(), flip_filters=flip_filters) toc("loop channelwise locally connected time for x_shape=%r, filter_size=%r, flip_filters=%r, batch_size=%r\n\t" % (x_shape, filter_size, flip_filters, batch_size)) assert np.allclose(conv, loop_conv, atol=1e-7)
Example #10
Source File: benchmark_imagenet.py From convnet-benchmarks with MIT License | 6 votes |
def main(): batch_size = args.batch_size print('Building model...') layer, input_var = build_model(batch_size=batch_size) labels_var = T.ivector('labels') output = get_output(layer) loss = T.nnet.categorical_crossentropy( T.nnet.softmax(output), labels_var).mean( dtype=theano.config.floatX) gradient = T.grad(loss, get_all_params(layer)) print('Compiling theano functions...') forward_func = theano.function([input_var], output) full_func = theano.function([input_var, labels_var], gradient) print('Functions are compiled') images = np.random.rand(batch_size, 3, image_sz, image_sz).astype(np.float32) labels = np.random.randint(0, 1000, size=batch_size).astype(np.int32) time_theano_run(forward_func, [images], 'Forward') time_theano_run(full_func, [images, labels], 'Forward-Backward')
Example #11
Source File: test_layers.py From ntm-lasagne with MIT License | 6 votes |
def test_batch_size(): input_var01, input_var16 = T.tensor3s('input01', 'input16') l_output01 = model(input_var01, batch_size=1) l_output16 = model(input_var16, batch_size=16) # Share the parameters for both models params01 = get_all_param_values(l_output01) set_all_param_values(l_output16, params01) posterior_fn01 = theano.function([input_var01], get_output(l_output01)) posterior_fn16 = theano.function([input_var16], get_output(l_output16)) example_input = np.random.rand(16, 30, 8) example_output16 = posterior_fn16(example_input) example_output01 = np.zeros_like(example_output16) for i in range(16): example_output01[i] = posterior_fn01(example_input[i][np.newaxis, :, :]) assert example_output16.shape == (16, 30, 8) assert np.allclose(example_output16, example_output01, atol=1e-3)
Example #12
Source File: servoing_policy.py From visual_dynamics with MIT License | 6 votes |
def _get_jac_z_vars(self): if not self.predictor.feature_jacobian_name: raise NotImplementedError X_var, U_var, X_target_var, U_lin_var, alpha_var = self.input_vars names = [self.predictor.feature_name, self.predictor.feature_jacobian_name, self.predictor.next_feature_name] vars_ = L.get_output([self.predictor.pred_layers[name] for name in iter_util.flatten_tree(names)], deterministic=True) feature_vars, jac_vars, next_feature_vars = iter_util.unflatten_tree(names, vars_) y_vars = [T.flatten(feature_var, outdim=2) for feature_var in feature_vars] y_target_vars = [theano.clone(y_var, replace={X_var: X_target_var}) for y_var in y_vars] y_target_vars = [theano.ifelse.ifelse(T.eq(alpha_var, 1.0), y_target_var, alpha_var * y_target_var + (1 - alpha_var) * y_var) for (y_var, y_target_var) in zip(y_vars, y_target_vars)] jac_vars = [theano.clone(jac_var, replace={U_var: U_lin_var}) for jac_var in jac_vars] y_next_pred_vars = [T.flatten(next_feature_var, outdim=2) for next_feature_var in next_feature_vars] y_next_pred_vars = [theano.clone(y_next_pred_var, replace={U_var: U_lin_var}) for y_next_pred_var in y_next_pred_vars] z_vars = [y_target_var - y_next_pred_var + T.batched_tensordot(jac_var, U_lin_var, axes=(2, 1)) for (y_target_var, y_next_pred_var, jac_var) in zip(y_target_vars, y_next_pred_vars, jac_vars)] return jac_vars, z_vars
Example #13
Source File: servoing_policy.py From visual_dynamics with MIT License | 6 votes |
def _get_jac_vars(self): if not self.predictor.feature_jacobian_name: raise NotImplementedError X_var, U_var, X_target_var, U_lin_var, alpha_var = self.input_vars names = [self.predictor.feature_name, self.predictor.feature_jacobian_name, self.predictor.next_feature_name] vars_ = L.get_output([self.predictor.pred_layers[name] for name in iter_util.flatten_tree(names)], deterministic=True) feature_vars, jac_vars, next_feature_vars = iter_util.unflatten_tree(names, vars_) y_vars = [T.flatten(feature_var, outdim=2) for feature_var in feature_vars] y_target_vars = [theano.clone(y_var, replace={X_var: X_target_var}) for y_var in y_vars] y_target_vars = [theano.ifelse.ifelse(T.eq(alpha_var, 1.0), y_target_var, alpha_var * y_target_var + (1 - alpha_var) * y_var) for (y_var, y_target_var) in zip(y_vars, y_target_vars)] jac_vars = [theano.clone(jac_var, replace={U_var: U_lin_var}) for jac_var in jac_vars] return jac_vars
Example #14
Source File: snn_mlp_policy.py From snn4hrl with MIT License | 6 votes |
def dist_info_sym(self, obs_var, latent_var=None): # this is ment to be for one path! # now this is not doing anything! And for computing the dist_info_vars of npo_snn_rewardMI it doesn't work if latent_var is None: latent_var1 = theano.shared(np.expand_dims(self.latent_fix, axis=0)) # new fix to avoid putting the latent as an input: just take the one fixed! latent_var = TT.tile(latent_var1, [obs_var.shape[0], 1]) # generate the generalized input (append latents to obs.) if self.bilinear_integration: extended_obs_var = TT.concatenate([obs_var, latent_var, TT.flatten(obs_var[:, :, np.newaxis] * latent_var[:, np.newaxis, :], outdim=2)] , axis=1) else: extended_obs_var = TT.concatenate([obs_var, latent_var], axis=1) mean_var, log_std_var = L.get_output([self._l_mean, self._l_log_std], extended_obs_var) if self.min_std is not None: log_std_var = TT.maximum(log_std_var, np.log(self.min_std)) return dict(mean=mean_var, log_std=log_std_var)
Example #15
Source File: theano_funcs.py From adversarial-autoencoder with MIT License | 6 votes |
def create_decoder_func(layers): Z = T.fmatrix('Z') Z_batch = T.fmatrix('Z_batch') X = get_output( layers['l_decoder_out'], inputs={ layers['l_encoder_out']: Z }, deterministic=True ) decoder_func = theano.function( inputs=[theano.In(Z_batch)], outputs=X, givens={ Z: Z_batch, }, ) return decoder_func # forward/backward (optional) pass for the encoder/decoder pair
Example #16
Source File: theano_funcs.py From adversarial-autoencoder with MIT License | 6 votes |
def create_encoder_func(layers): X = T.fmatrix('X') X_batch = T.fmatrix('X_batch') Z = get_output(layers['l_encoder_out'], X, deterministic=True) encoder_func = theano.function( inputs=[theano.In(X_batch)], outputs=Z, givens={ X: X_batch, }, ) return encoder_func # forward pass for the decoder, p(x|z)
Example #17
Source File: WordDropout.py From neural-dep-srl with Apache License 2.0 | 5 votes |
def __init__(self, incoming, w_freq, alpha, shared_axes=(), **kwargs): super(WordDropoutLayer, self).__init__(incoming, **kwargs) self._srng = RandomStreams(get_rng().randint(1, 2147462579)) self.w_frew = w_freq self.alpha = alpha # self.retain = lo(alpha)/(lo(p)+lo(alpha)) self.retain = T.constant(1.)-(T.constant(alpha) / (lo(w_freq) + T.constant(alpha))) self.shared_axes = tuple(shared_axes)
Example #18
Source File: conv_sup_cc.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 5 votes |
def make_training_functions(network, encode_layer, input_var, aug_var, target_var): prediction = layers.get_output(network); loss = lasagne.objectives.binary_crossentropy(prediction, target_var).mean(); params = layers.get_all_params(network, trainable=True); updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=0.0005, momentum=0.975); encode = lasagne.layers.get_output(encode_layer, deterministic=True); test_output = lasagne.layers.get_output(network, deterministic=True); test_loss = lasagne.objectives.binary_crossentropy(test_output, target_var).mean(); val_fn = theano.function([input_var, aug_var, target_var], [test_loss, encode, test_output]); train_fn = theano.function([input_var, aug_var, target_var], loss, updates=updates); return train_fn, val_fn;
Example #19
Source File: conv_sup_cc_lbp.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 5 votes |
def make_training_functions(network, encode_layer, input_var, aug_var, fea_var, target_var): prediction = layers.get_output(network); loss = lasagne.objectives.binary_crossentropy(prediction, target_var).mean(); params = layers.get_all_params(network, trainable=True); updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=0.0005, momentum=0.975); encode = lasagne.layers.get_output(encode_layer, deterministic=True); test_output = lasagne.layers.get_output(network, deterministic=True); test_loss = lasagne.objectives.binary_crossentropy(test_output, target_var).mean(); val_fn = theano.function([input_var, aug_var, fea_var, target_var], [test_loss, encode, test_output]); train_fn = theano.function([input_var, aug_var, fea_var, target_var], loss, updates=updates); return train_fn, val_fn;
Example #20
Source File: test_layers.py From ntm-lasagne with MIT License | 5 votes |
def test_batch_size_none(): input_var = T.tensor3('input') l_output = model(input_var, batch_size=None) posterior_fn = theano.function([input_var], get_output(l_output)) example_input = np.random.rand(16, 30, 8) example_output = posterior_fn(example_input) assert example_output.shape == (16, 30, 8)
Example #21
Source File: birdCLEF_evaluate.py From BirdCLEF2017 with MIT License | 5 votes |
def getPredictionFuntion(net): net_output = l.get_output(net, deterministic=True) print "COMPILING THEANO TEST FUNCTION...", start = time.time() test_net = theano.function([l.get_all_layers(net)[0].input_var], net_output, allow_input_downcast=True) print "DONE! (", int(time.time() - start), "s )" return test_net ################# PREDICTION POOLING ####################
Example #22
Source File: models.py From drmad with MIT License | 5 votes |
def __init__(self, x, y, args): self.params_theta = [] self.params_lambda = [] self.params_weight = [] if args.dataset == 'mnist': input_size = (None, 1, 28, 28) elif args.dataset == 'cifar10': input_size = (None, 3, 32, 32) else: raise AssertionError layers = [ll.InputLayer(input_size)] self.penalty = theano.shared(np.array(0.)) #conv1 layers.append(Conv2DLayerWithReg(args, layers[-1], 20, 5)) self.add_params_to_self(args, layers[-1]) layers.append(ll.MaxPool2DLayer(layers[-1], pool_size=2, stride=2)) #conv1 layers.append(Conv2DLayerWithReg(args, layers[-1], 50, 5)) self.add_params_to_self(args, layers[-1]) layers.append(ll.MaxPool2DLayer(layers[-1], pool_size=2, stride=2)) #fc1 layers.append(DenseLayerWithReg(args, layers[-1], num_units=500)) self.add_params_to_self(args, layers[-1]) #softmax layers.append(DenseLayerWithReg(args, layers[-1], num_units=10, nonlinearity=nonlinearities.softmax)) self.add_params_to_self(args, layers[-1]) self.layers = layers self.y = ll.get_output(layers[-1], x, deterministic=False) self.prediction = T.argmax(self.y, axis=1) # self.penalty = penalty if penalty != 0. else T.constant(0.) print(self.params_lambda) # time.sleep(20) # cost function self.loss = T.mean(categorical_crossentropy(self.y, y)) self.lossWithPenalty = T.add(self.loss, self.penalty) print "loss and losswithpenalty", type(self.loss), type(self.lossWithPenalty)
Example #23
Source File: birdCLEF_test.py From BirdCLEF2017 with MIT License | 5 votes |
def getPredictionFuntion(net): net_output = l.get_output(net, deterministic=True) print "COMPILING THEANO TEST FUNCTION...", start = time.time() test_net = theano.function([l.get_all_layers(NET)[0].input_var], net_output, allow_input_downcast=True) print "DONE! (", int(time.time() - start), "s )" return test_net
Example #24
Source File: WordDropout.py From neural-dep-srl with Apache License 2.0 | 5 votes |
def __init__(self, incoming, previous_mask, p=0.5, rescale=False, shared_axes=(), **kwargs): super(ConditionedWordDropoutLayer, self).__init__(incoming, **kwargs) self._srng = RandomStreams(get_rng().randint(1, 2147462579)) self.p = p self.rescale = rescale # self.retain = lo(alpha)/(lo(p)+lo(alpha)) self.retain = T.constant(1) - p self.previous_mask = -(lo(previous_mask)-T.constant(1)) self.shared_axes = tuple(shared_axes)
Example #25
Source File: model.py From BirdNET with MIT License | 5 votes |
def test_function(net, layer_index=-1): log.p('COMPILING THEANO TEST FUNCTION FUNCTION...', new_line=False) prediction = l.get_output(l.get_all_layers(net)[layer_index], deterministic=True) test_function = theano.function([l.get_all_layers(net)[0].input_var], prediction, allow_input_downcast=True) log.p('DONE!') return test_function
Example #26
Source File: util.py From neural-dep-srl with Apache License 2.0 | 5 votes |
def mask_loss(loss, mask): return loss * lo(LL.FlattenLayer(mask, 1))
Example #27
Source File: util.py From neural-dep-srl with Apache License 2.0 | 5 votes |
def ls(l, x): return lo(l).shape[x]
Example #28
Source File: AED_test.py From AcousticEventDetection with MIT License | 5 votes |
def getPredictionFuntion(net): net_output = l.get_output(net, deterministic=True) print "COMPILING THEANO TEST FUNCTION...", start = time.time() test_net = theano.function([l.get_all_layers(NET)[0].input_var], net_output, allow_input_downcast=True) print "DONE! (", int(time.time() - start), "s )" return test_net ################# PREDICTION POOLING ####################
Example #29
Source File: AED_eval.py From AcousticEventDetection with MIT License | 5 votes |
def getPredictionFuntion(net): net_output = l.get_output(net, deterministic=True) print "COMPILING THEANO TEST FUNCTION...", start = time.time() test_net = theano.function([l.get_all_layers(NET)[0].input_var], net_output, allow_input_downcast=True) print "DONE! (", int(time.time() - start), "s )" return test_net ################# PREDICTION POOLING ####################
Example #30
Source File: util.py From cnn_workshop with Apache License 2.0 | 5 votes |
def get_activations(layer, x): # compile theano function xs = T.tensor4('xs').astype(theano.config.floatX) get_activity = theano.function([xs], get_output(layer, xs)) return get_activity(x)