Python lasagne.layers.set_all_param_values() Examples
The following are 30
code examples of lasagne.layers.set_all_param_values().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
lasagne.layers
, or try the search function
.
Example #1
Source File: deep_conv_classification_alt48_heatmap.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn): X, inds, coor = load_data(); network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); layers.set_all_param_values(network, pickle.load(open(CNNModel, 'rb'))); A = get_aug_feas(X); Y = np.zeros((X.shape[0], classn), dtype=np.int32); # Testing _, _, _, _, Or, _ = val_fn_epoch(classn, val_fn, X, A, Y); Or_all = np.zeros(shape=(coor.shape[0],), dtype=np.float32); Or_all[inds] = Or[:, 0]; fid = open(TileFolder + '/' + heat_map_out, 'w'); for idx in range(0, Or_all.shape[0]): fid.write('{} {} {}\n'.format(coor[idx][0], coor[idx][1], Or_all[idx])); fid.close(); return;
Example #2
Source File: deep_conv_classification_alt48_adeno_prad_ucec_t1_heatmap.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn): X, inds, coor = load_data(); network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); layers.set_all_param_values(network, pickle.load(open(CNNModel, 'rb'))); A = get_aug_feas(X); Y = np.zeros((X.shape[0], classn), dtype=np.int32); # Testing _, _, _, _, Or, _ = val_fn_epoch(classn, val_fn, X, A, Y); Or_all = np.zeros(shape=(coor.shape[0],), dtype=np.float32); Or_all[inds] = Or[:, 0]; fid = open(TileFolder + '/' + heat_map_out, 'w'); for idx in range(0, Or_all.shape[0]): fid.write('{} {} {}\n'.format(coor[idx][0], coor[idx][1], Or_all[idx])); fid.close(); return;
Example #3
Source File: deep_conv_classification_alt48_luad10_luad10in20_brca10x2_heatmap.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn): X, coor = load_data(); network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); layers.set_all_param_values(network, pickle.load(open(CNNModel, 'rb'))); A = get_aug_feas(X); Y = np.zeros((X.shape[0], classn), dtype=np.int32); # Testing _, _, _, Pr, Or, Tr = val_fn_epoch(classn, val_fn, X, A, Y); fid = open(TileFolder + '/' + heat_map_out, 'w'); for idx in range(0, Or.shape[0]): fid.write('{} {} {}\n'.format(coor[idx][0], coor[idx][1], Or[idx][0])); fid.close(); return Pr, Or, Tr;
Example #4
Source File: deep_conv_classification_lpatch_alt1.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn, valid_num): X_train, y_train, X_test, y_test = load_data(classn, valid_num); network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); layers.set_all_param_values(network, pickle.load(open('model_vals/deep_conv_classification_lpatch_alt1.py_e30_cv0.pkl', 'rb'))); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); a_train = get_aug_feas(X_train); a_test = get_aug_feas(X_test); #train_round(31, network, valid_num, new_params_train_fn, val_fn, classn, X_train, a_train, y_train, X_test, a_test, y_test); LearningRate.set_value(np.float32(0.03*LearningRate.get_value())); train_round(240, network, valid_num, train_fn, val_fn, classn, X_train, a_train, y_train, X_test, a_test, y_test); # Testing _, _, _, Pr, Or, Tr = val_fn_epoch(classn, val_fn, X_test, a_test, y_test); return Pr, Or, Tr;
Example #5
Source File: deep_conv_classification_alt48_adeno_prad_t1_heatmap.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn): X, inds, coor = load_data(); network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); layers.set_all_param_values(network, pickle.load(open(CNNModel, 'rb'))); A = get_aug_feas(X); Y = np.zeros((X.shape[0], classn), dtype=np.int32); # Testing _, _, _, _, Or, _ = val_fn_epoch(classn, val_fn, X, A, Y); Or_all = np.zeros(shape=(coor.shape[0],), dtype=np.float32); Or_all[inds] = Or[:, 0]; fid = open(TileFolder + '/' + heat_map_out, 'w'); for idx in range(0, Or_all.shape[0]): fid.write('{} {} {}\n'.format(coor[idx][0], coor[idx][1], Or_all[idx])); fid.close(); return;
Example #6
Source File: deep_conv_classification_alt51_heatmap.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn): X, coor = load_data(); network, input_var, target_var = build_network_from_ae(classn); val_fn = make_training_functions(network, input_var, target_var); layers.set_all_param_values(network, pickle.load(open(CNNModel, 'rb'))); Y = np.zeros((X.shape[0], classn), dtype=np.int32); # Testing _, _, _, Pr, Or, Tr = val_fn_epoch(classn, val_fn, X, Y); fid = open(TileFolder + '/' + heat_map_out, 'w'); for idx in range(0, Or.shape[0]): fid.write('{} {} {}\n'.format(coor[idx][0], coor[idx][1], Or[idx][0])); fid.close(); return Pr, Or, Tr;
Example #7
Source File: deep_conv_classification_lpatch_alt2.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn, valid_num): X_train, y_train, X_test, y_test = load_data(classn, valid_num); network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); layers.set_all_param_values(network, pickle.load(open('model_vals/deep_conv_classification_lpatch_alt2.py_e15_cv0.pkl', 'rb'))); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); a_train = get_aug_feas(X_train); a_test = get_aug_feas(X_test); #train_round(16, network, valid_num, new_params_train_fn, val_fn, classn, X_train, a_train, y_train, X_test, a_test, y_test); LearningRate.set_value(np.float32(0.10*LearningRate.get_value())); train_round(240, network, valid_num, train_fn, val_fn, classn, X_train, a_train, y_train, X_test, a_test, y_test); # Testing _, _, _, Pr, Or, Tr = val_fn_epoch(classn, val_fn, X_test, a_test, y_test); return Pr, Or, Tr;
Example #8
Source File: deep_conv_classification_alt48_luad10_skcm10_lr0_heatmap.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn): X, inds, coor = load_data(); network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); layers.set_all_param_values(network, pickle.load(open(CNNModel, 'rb'))); A = get_aug_feas(X); Y = np.zeros((X.shape[0], classn), dtype=np.int32); # Testing _, _, _, _, Or, _ = val_fn_epoch(classn, val_fn, X, A, Y); Or_all = np.zeros(shape=(coor.shape[0],), dtype=np.float32); Or_all[inds] = Or[:, 0]; fid = open(TileFolder + '/' + heat_map_out, 'w'); for idx in range(0, Or_all.shape[0]): fid.write('{} {} {}\n'.format(coor[idx][0], coor[idx][1], Or_all[idx])); fid.close(); return;
Example #9
Source File: deep_conv_classification_alt48_heatmap_only_melanoma.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn): X, inds, coor = load_data(); network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); layers.set_all_param_values(network, pickle.load(open(CNNModel, 'rb'))); A = get_aug_feas(X); Y = np.zeros((X.shape[0], classn), dtype=np.int32); # Testing _, _, _, _, Or, _ = val_fn_epoch(classn, val_fn, X, A, Y); Or_all = np.zeros(shape=(coor.shape[0],), dtype=np.float32); Or_all[inds] = Or[:, 0]; fid = open(TileFolder + '/' + heat_map_out, 'w'); for idx in range(0, Or_all.shape[0]): fid.write('{} {} {}\n'.format(coor[idx][0], coor[idx][1], Or_all[idx])); fid.close(); return;
Example #10
Source File: deep_conv_classification_alt48_luad10_luad10in20_brca10x1_heatmap.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn): X, coor = load_data(); network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); layers.set_all_param_values(network, pickle.load(open(CNNModel, 'rb'))); A = get_aug_feas(X); Y = np.zeros((X.shape[0], classn), dtype=np.int32); # Testing _, _, _, Pr, Or, Tr = val_fn_epoch(classn, val_fn, X, A, Y); fid = open(TileFolder + '/' + heat_map_out, 'w'); for idx in range(0, Or.shape[0]): fid.write('{} {} {}\n'.format(coor[idx][0], coor[idx][1], Or[idx][0])); fid.close(); return Pr, Or, Tr;
Example #11
Source File: deep_conv_classification_alt48_luad10_skcm10_heatmap.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn): X, coor = load_data(); network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); layers.set_all_param_values(network, pickle.load(open(CNNModel, 'rb'))); A = get_aug_feas(X); Y = np.zeros((X.shape[0], classn), dtype=np.int32); # Testing _, _, _, Pr, Or, Tr = val_fn_epoch(classn, val_fn, X, A, Y); fid = open(TileFolder + '/' + heat_map_out, 'w'); for idx in range(0, Or.shape[0]): fid.write('{} {} {}\n'.format(coor[idx][0], coor[idx][1], Or[idx][0])); fid.close(); return Pr, Or, Tr;
Example #12
Source File: deep_conv_classification_lpatch_alt3.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn, valid_num): X_train, y_train, X_test, y_test = load_data(classn, valid_num); network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); layers.set_all_param_values(network, pickle.load(open('model_vals/deep_conv_classification_lpatch_alt1.py_e10_cv0.pkl', 'rb'))); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); a_train = get_aug_feas(X_train); a_test = get_aug_feas(X_test); #train_round(31, network, valid_num, new_params_train_fn, val_fn, classn, X_train, a_train, y_train, X_test, a_test, y_test); LearningRate.set_value(np.float32(0.03*LearningRate.get_value())); train_round(240, network, valid_num, train_fn, val_fn, classn, X_train, a_train, y_train, X_test, a_test, y_test); # Testing _, _, _, Pr, Or, Tr = val_fn_epoch(classn, val_fn, X_test, a_test, y_test); return Pr, Or, Tr;
Example #13
Source File: deep_conv_classification_alt48_adeno_heatmap.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn): X, inds, coor = load_data(); network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); layers.set_all_param_values(network, pickle.load(open(CNNModel, 'rb'))); A = get_aug_feas(X); Y = np.zeros((X.shape[0], classn), dtype=np.int32); # Testing _, _, _, _, Or, _ = val_fn_epoch(classn, val_fn, X, A, Y); Or_all = np.zeros(shape=(coor.shape[0],), dtype=np.float32); Or_all[inds] = Or[:, 0]; fid = open(TileFolder + '/' + heat_map_out, 'w'); for idx in range(0, Or_all.shape[0]): fid.write('{} {} {}\n'.format(coor[idx][0], coor[idx][1], Or_all[idx])); fid.close(); return;
Example #14
Source File: pred.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn): network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); layers.set_all_param_values(network, pickle.load(open(CNNModel, 'rb'))); # Testing Or, inds, coor = val_fn_epoch_on_disk(classn, val_fn); Or_all = np.zeros(shape=(coor.shape[0],), dtype=np.float32); Or_all[inds] = Or[:, 0]; fid = open(TileFolder + '/' + heat_map_out, 'w'); for idx in range(0, Or_all.shape[0]): fid.write('{} {} {}\n'.format(coor[idx][0], coor[idx][1], Or_all[idx])); fid.close(); return;
Example #15
Source File: deep_conv_classification_alt51_luad10_luad10in20_brca10x2_heatmap.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn): X, coor = load_data(); network, input_var, target_var = build_network_from_ae(classn); val_fn = make_training_functions(network, input_var, target_var); layers.set_all_param_values(network, pickle.load(open(CNNModel, 'rb'))); Y = np.zeros((X.shape[0], classn), dtype=np.int32); # Testing _, _, _, Pr, Or, Tr = val_fn_epoch(classn, val_fn, X, Y); fid = open(TileFolder + '/' + heat_map_out, 'w'); for idx in range(0, Or.shape[0]): fid.write('{} {} {}\n'.format(coor[idx][0], coor[idx][1], Or[idx][0])); fid.close(); return Pr, Or, Tr;
Example #16
Source File: deep_conv_classification_alt51_luad10_luad10in20_brca10x1_heatmap.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn): X, coor = load_data(); network, input_var, target_var = build_network_from_ae(classn); val_fn = make_training_functions(network, input_var, target_var); layers.set_all_param_values(network, pickle.load(open(CNNModel, 'rb'))); Y = np.zeros((X.shape[0], classn), dtype=np.int32); # Testing _, _, _, Pr, Or, Tr = val_fn_epoch(classn, val_fn, X, Y); fid = open(TileFolder + '/' + heat_map_out, 'w'); for idx in range(0, Or.shape[0]): fid.write('{} {} {}\n'.format(coor[idx][0], coor[idx][1], Or[idx][0])); fid.close(); return Pr, Or, Tr;
Example #17
Source File: deep_conv_classification_alt48_adeno_t1_heatmap.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn): X, inds, coor = load_data(); network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); layers.set_all_param_values(network, pickle.load(open(CNNModel, 'rb'))); A = get_aug_feas(X); Y = np.zeros((X.shape[0], classn), dtype=np.int32); # Testing _, _, _, _, Or, _ = val_fn_epoch(classn, val_fn, X, A, Y); Or_all = np.zeros(shape=(coor.shape[0],), dtype=np.float32); Or_all[inds] = Or[:, 0]; fid = open(TileFolder + '/' + heat_map_out, 'w'); for idx in range(0, Or_all.shape[0]): fid.write('{} {} {}\n'.format(coor[idx][0], coor[idx][1], Or_all[idx])); fid.close(); return;
Example #18
Source File: pred.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def split_validation(classn): network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); layers.set_all_param_values(network, pickle.load(open(CNNModel, 'rb'))); # Testing Or, inds, coor = val_fn_epoch_on_disk(classn, val_fn); Or_all = np.zeros(shape=(coor.shape[0],), dtype=np.float32); Or_all[inds] = Or[:, 0]; fid = open(TileFolder + '/' + heat_map_out, 'w'); for idx in range(0, Or_all.shape[0]): fid.write('{} {} {}\n'.format(coor[idx][0], coor[idx][1], Or_all[idx])); fid.close(); return;
Example #19
Source File: lasagne_net.py From BirdCLEF-Baseline with MIT License | 6 votes |
def loadPretrained(net): if cfg.MODEL_NAME: # Load saved model n, c = io.loadModel(cfg.MODEL_NAME) # Set params params = l.get_all_param_values(n) if cfg.LOAD_OUTPUT_LAYER: l.set_all_param_values(net, params) else: l.set_all_param_values(l.get_all_layers(net)[:-1], params[:-2]) return net #################### LOSS FUNCTION ######################
Example #20
Source File: AED_train.py From AcousticEventDetection with MIT License | 6 votes |
def loadModel(filename): print "IMPORTING MODEL PARAMS...", net_filename = MODEL_PATH + filename with open(net_filename, 'rb') as f: data = pickle.load(f) #for training, we only want to load the model params net = data['net'] params = l.get_all_param_values(net) if LOAD_OUTPUT_LAYER: l.set_all_param_values(NET, params) else: l.set_all_param_values(l.get_all_layers(NET)[:-1], params[:-2]) print "DONE!"
Example #21
Source File: birdCLEF_train.py From BirdCLEF2017 with MIT License | 5 votes |
def loadParams(epoch, filename=None): print "IMPORTING MODEL PARAMS...", if filename == None: net_filename = MODEL_PATH + "birdCLEF_" + RUN_NAME + "_model_params_epoch_" + str(epoch) + ".pkl" else: net_filename = MODEL_PATH + filename with open(net_filename, 'rb') as f: params = pickle.load(f) if LOAD_OUTPUT_LAYER: l.set_all_param_values(NET, params) else: l.set_all_param_values(l.get_all_layers(NET)[:-1], params[:-2]) print "DONE!"
Example #22
Source File: GAReader.py From ga-reader with BSD 2-Clause "Simplified" License | 5 votes |
def load_model(self, load_path): with open(load_path, 'r') as f: data = pickle.load(f) L.set_all_param_values(self.network, data)
Example #23
Source File: birdCLEF_evaluate.py From BirdCLEF2017 with MIT License | 5 votes |
def loadParams(epoch, filename=None): print "IMPORTING MODEL PARAMS...", net_filename = MODEL_PATH + filename with open(net_filename, 'rb') as f: params = pickle.load(f) if LOAD_OUTPUT_LAYER: l.set_all_param_values(NET, params) else: l.set_all_param_values(l.get_all_layers(NET)[:-1], params[:-2]) print "DONE!" ################ PREDICTION SAVE/LOAD ##################
Example #24
Source File: birdCLEF_test.py From BirdCLEF2017 with MIT License | 5 votes |
def loadParams(epoch, filename=None): print "IMPORTING MODEL PARAMS...", net_filename = MODEL_PATH + filename with open(net_filename, 'rb') as f: params = pickle.load(f) l.set_all_param_values(NET, params) print "DONE!" #load params of trained model
Example #25
Source File: deep_conv_classification_alt36_deploy.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 5 votes |
def split_validation(classn, valid_num): X_train, y_train, X_test, y_test = load_data(classn, valid_num); network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); a_train = get_aug_feas(X_train); a_test = get_aug_feas(X_test); layers.set_all_param_values(network, pickle.load(open(model_dump + '_e{}_cv{}.pkl'.format(read_epoch, valid_num), 'rb'))); # Testing _, _, _, Pr, Or, Tr = val_fn_epoch(classn, val_fn, X_test, a_test, y_test); save_visual_cases(X_test, Or, Tr); return Pr, Or, Tr;
Example #26
Source File: deep_conv_classification_alt48_luad10_skcm10_lr0_deploy.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 5 votes |
def split_validation(classn, valid_num): X_train, y_train, X_test, y_test = load_data(classn, valid_num); network, new_params, input_var, aug_var, target_var = build_network_from_ae(classn); train_fn, new_params_train_fn, val_fn = make_training_functions(network, new_params, input_var, aug_var, target_var); a_train = get_aug_feas(X_train); a_test = get_aug_feas(X_test); layers.set_all_param_values(network, pickle.load(open(model_dump + '_e{}_cv{}.pkl'.format(read_epoch, valid_num), 'rb'))); # Testing _, _, _, Pr, Or, Tr = val_fn_epoch(classn, val_fn, X_test, a_test, y_test); save_visual_cases(X_test, Or, Tr); return Pr, Or, Tr;
Example #27
Source File: agent_rl.py From KB-InfoBot with MIT License | 5 votes |
def load_model(self, load_path): with open(load_path, 'r') as f: data = pkl.load(f) L.set_all_param_values(self.network, data)
Example #28
Source File: agent_lu_rl.py From KB-InfoBot with MIT License | 5 votes |
def load_model(self, load_path): with open(load_path, 'r') as f: data = pkl.load(f) L.set_all_param_values(self.network, data) for item in self.trackers: data = pkl.load(f) L.set_all_param_values(item, data)
Example #29
Source File: model.py From BirdNET with MIT License | 5 votes |
def loadParams(net, params): log.p('IMPORTING MODEL PARAMS...', new_line=False) l.set_all_param_values(net, params) log.p('DONE!') return net
Example #30
Source File: lasagne_io.py From BirdCLEF-Baseline with MIT License | 5 votes |
def loadParams(net, params): log.i("IMPORTING MODEL PARAMS...", new_line=False) if cfg.LOAD_OUTPUT_LAYER: l.set_all_param_values(net, params) else: l.set_all_param_values(l.get_all_layers(net)[:-2], params[:-2]) log.i("DONE!") return net