Python lasagne.layers.InputLayer() Examples
The following are 30
code examples of lasagne.layers.InputLayer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
lasagne.layers
, or try the search function
.
Example #1
Source File: models.py From recurrent-memory with GNU Lesser General Public License v3.0 | 6 votes |
def LeInitRecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, diag_val=0.9, offdiag_val=0.01, out_nlin=lasagne.nonlinearities.linear): # Input Layer l_in = InputLayer((batch_size, None, n_in), input_var=input_var) if mask_var==None: l_mask=None else: l_mask = InputLayer((batch_size, None), input_var=mask_var) _, seqlen, _ = l_in.input_var.shape l_in_hid = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid, W=lasagne.init.GlorotNormal(0.95), nonlinearity=lasagne.nonlinearities.linear) l_hid_hid = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, W=LeInit(diag_val=diag_val, offdiag_val=offdiag_val), nonlinearity=lasagne.nonlinearities.linear) l_rec = lasagne.layers.CustomRecurrentLayer(l_in, l_in_hid, l_hid_hid, nonlinearity=lasagne.nonlinearities.rectify, mask_input=l_mask, grad_clipping=100) # Output Layer l_shp = ReshapeLayer(l_rec, (-1, n_hid)) l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.95), nonlinearity=out_nlin) # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above. l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out)) return l_out, l_rec
Example #2
Source File: model.py From gogh-figure with GNU Affero General Public License v3.0 | 6 votes |
def setup_transform_net(self, input_var=None): transform_net = InputLayer(shape=self.shape, input_var=input_var) transform_net = style_conv_block(transform_net, self.num_styles, 32, 9, 1) transform_net = style_conv_block(transform_net, self.num_styles, 64, 3, 2) transform_net = style_conv_block(transform_net, self.num_styles, 128, 3, 2) for _ in range(5): transform_net = residual_block(transform_net, self.num_styles) transform_net = nn_upsample(transform_net, self.num_styles) transform_net = nn_upsample(transform_net, self.num_styles) if self.net_type == 0: transform_net = style_conv_block(transform_net, self.num_styles, 3, 9, 1, tanh) transform_net = ExpressionLayer(transform_net, lambda X: 150.*X, output_shape=None) elif self.net_type == 1: transform_net = style_conv_block(transform_net, self.num_styles, 3, 9, 1, sigmoid) self.network['transform_net'] = transform_net
Example #3
Source File: servoing_policy_network.py From visual_dynamics with MIT License | 6 votes |
def __init__(self, input_shape, output_dim, servoing_pol, name=None, input_var=None): if name is None: prefix = "" else: prefix = name + "_" if len(input_shape) == 3: l_in = L.InputLayer(shape=(None, np.prod(input_shape)), input_var=input_var) l_hid = L.reshape(l_in, ([0],) + input_shape) elif len(input_shape) == 2: l_in = L.InputLayer(shape=(None, np.prod(input_shape)), input_var=input_var) input_shape = (1,) + input_shape l_hid = L.reshape(l_in, ([0],) + input_shape) else: l_in = L.InputLayer(shape=(None,) + input_shape, input_var=input_var) l_hid = l_in l_out = TheanoServoingPolicyLayer(l_hid, servoing_pol) self._l_in = l_in self._l_out = l_out self._input_var = l_in.input_var
Example #4
Source File: adda_network.py From adda_mnist64 with MIT License | 6 votes |
def network_classifier(self, input_var): network = {} network['classifier/input'] = InputLayer(shape=(None, 3, 64, 64), input_var=input_var, name='classifier/input') network['classifier/conv1'] = Conv2DLayer(network['classifier/input'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv1') network['classifier/pool1'] = MaxPool2DLayer(network['classifier/conv1'], pool_size=2, stride=2, pad=0, name='classifier/pool1') network['classifier/conv2'] = Conv2DLayer(network['classifier/pool1'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv2') network['classifier/pool2'] = MaxPool2DLayer(network['classifier/conv2'], pool_size=2, stride=2, pad=0, name='classifier/pool2') network['classifier/conv3'] = Conv2DLayer(network['classifier/pool2'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv3') network['classifier/pool3'] = MaxPool2DLayer(network['classifier/conv3'], pool_size=2, stride=2, pad=0, name='classifier/pool3') network['classifier/conv4'] = Conv2DLayer(network['classifier/pool3'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv4') network['classifier/pool4'] = MaxPool2DLayer(network['classifier/conv4'], pool_size=2, stride=2, pad=0, name='classifier/pool4') network['classifier/dense1'] = DenseLayer(network['classifier/pool4'], num_units=64, nonlinearity=rectify, name='classifier/dense1') network['classifier/output'] = DenseLayer(network['classifier/dense1'], num_units=10, nonlinearity=softmax, name='classifier/output') return network
Example #5
Source File: models_uncond.py From EvolutionaryGAN with MIT License | 6 votes |
def build_discriminator_128(image=None,ndf=128): lrelu = LeakyRectify(0.2) # input: images InputImg = InputLayer(shape=(None, 3, 128, 128), input_var=image) print ("Dis Img_input:", InputImg.output_shape) # Conv Layer dis1 = Conv2DLayer(InputImg, ndf, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu) print ("Dis conv1:", dis1.output_shape) # Conv Layer dis2 = batch_norm(Conv2DLayer(dis1, ndf*2, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu)) print ("Dis conv2:", dis2.output_shape) # Conv Layer dis3 = batch_norm(Conv2DLayer(dis2, ndf*4, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu)) print ("Dis conv3:", dis3.output_shape) # Conv Layer dis4 = batch_norm(Conv2DLayer(dis3, ndf*8, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu)) print ("Dis conv3:", dis4.output_shape) # Conv Layer dis5 = batch_norm(Conv2DLayer(dis4, ndf*16, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu)) print ("Dis conv4:", dis5.output_shape) # Conv Layer dis6 = DenseLayer(dis5, 1, W=Normal(0.02), nonlinearity=sigmoid) print ("Dis output:", dis6.output_shape) return dis6
Example #6
Source File: test_layers_theano.py From visual_dynamics with MIT License | 6 votes |
def test_conv2d(x_shape, num_filters, filter_size, flip_filters, batch_size=2): X_var = T.tensor4('X') l_x = L.InputLayer(shape=(None,) + x_shape, input_var=X_var, name='x') X = np.random.random((batch_size,) + x_shape).astype(theano.config.floatX) l_conv = L.Conv2DLayer(l_x, num_filters, filter_size=filter_size, stride=1, pad='same', flip_filters=flip_filters, untie_biases=True, nonlinearity=None, b=None) conv_var = L.get_output(l_conv) conv_fn = theano.function([X_var], conv_var) tic() conv = conv_fn(X) toc("conv time for x_shape=%r, num_filters=%r, filter_size=%r, flip_filters=%r, batch_size=%r\n\t" % (x_shape, num_filters, filter_size, flip_filters, batch_size)) tic() loop_conv = conv2d(X, l_conv.W.get_value(), flip_filters=flip_filters) toc("loop conv time for x_shape=%r, num_filters=%r, filter_size=%r, flip_filters=%r, batch_size=%r\n\t" % (x_shape, num_filters, filter_size, flip_filters, batch_size)) assert np.allclose(conv, loop_conv, atol=1e-6)
Example #7
Source File: models_uncond.py From EvolutionaryGAN with MIT License | 6 votes |
def build_generator_64(noise=None, ngf=128): # noise input InputNoise = InputLayer(shape=(None, 100), input_var=noise) #FC Layer gnet0 = DenseLayer(InputNoise, ngf*8*4*4, W=Normal(0.02), nonlinearity=relu) print ("Gen fc1:", gnet0.output_shape) #Reshape Layer gnet1 = ReshapeLayer(gnet0,([0],ngf*8,4,4)) print ("Gen rs1:", gnet1.output_shape) # DeConv Layer gnet2 = Deconv2DLayer(gnet1, ngf*8, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu) print ("Gen deconv2:", gnet2.output_shape) # DeConv Layer gnet3 = Deconv2DLayer(gnet2, ngf*4, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu) print ("Gen deconv3:", gnet3.output_shape) # DeConv Layer gnet4 = Deconv2DLayer(gnet3, ngf*4, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu) print ("Gen deconv4:", gnet4.output_shape) # DeConv Layer gnet5 = Deconv2DLayer(gnet4, ngf*2, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu) print ("Gen deconv5:", gnet5.output_shape) # DeConv Layer gnet6 = Deconv2DLayer(gnet5, 3, (3,3), (1,1), crop='same', W=Normal(0.02),nonlinearity=tanh) print ("Gen output:", gnet6.output_shape) return gnet6
Example #8
Source File: models_uncond.py From EvolutionaryGAN with MIT License | 6 votes |
def build_discriminator_32(image=None,ndf=128): lrelu = LeakyRectify(0.2) # input: images InputImg = InputLayer(shape=(None, 3, 32, 32), input_var=image) print ("Dis Img_input:", InputImg.output_shape) # Conv Layer dis1 = Conv2DLayer(InputImg, ndf, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu) print ("Dis conv1:", dis1.output_shape) # Conv Layer dis2 = batch_norm(Conv2DLayer(dis1, ndf*2, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu)) print ("Dis conv2:", dis2.output_shape) # Conv Layer dis3 = batch_norm(Conv2DLayer(dis2, ndf*4, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu)) print ("Dis conv3:", dis3.output_shape) # Conv Layer dis4 = DenseLayer(dis3, 1, W=Normal(0.02), nonlinearity=sigmoid) print ("Dis output:", dis4.output_shape) return dis4
Example #9
Source File: models_uncond.py From EvolutionaryGAN with MIT License | 6 votes |
def build_generator_32(noise=None, ngf=128): # noise input InputNoise = InputLayer(shape=(None, 100), input_var=noise) #FC Layer gnet0 = DenseLayer(InputNoise, ngf*4*4*4, W=Normal(0.02), nonlinearity=relu) print ("Gen fc1:", gnet0.output_shape) #Reshape Layer gnet1 = ReshapeLayer(gnet0,([0],ngf*4,4,4)) print ("Gen rs1:", gnet1.output_shape) # DeConv Layer gnet2 = Deconv2DLayer(gnet1, ngf*2, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu) print ("Gen deconv1:", gnet2.output_shape) # DeConv Layer gnet3 = Deconv2DLayer(gnet2, ngf, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu) print ("Gen deconv2:", gnet3.output_shape) # DeConv Layer gnet4 = Deconv2DLayer(gnet3, 3, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=tanh) print ("Gen output:", gnet4.output_shape) return gnet4
Example #10
Source File: models_uncond.py From EvolutionaryGAN with MIT License | 6 votes |
def build_discriminator_toy(image=None, nd=512, GP_norm=None): Input = InputLayer(shape=(None, 2), input_var=image) print ("Dis input:", Input.output_shape) dis0 = DenseLayer(Input, nd, W=Normal(0.02), nonlinearity=relu) print ("Dis fc0:", dis0.output_shape) if GP_norm is True: dis1 = DenseLayer(dis0, nd, W=Normal(0.02), nonlinearity=relu) else: dis1 = batch_norm(DenseLayer(dis0, nd, W=Normal(0.02), nonlinearity=relu)) print ("Dis fc1:", dis1.output_shape) if GP_norm is True: dis2 = batch_norm(DenseLayer(dis1, nd, W=Normal(0.02), nonlinearity=relu)) else: dis2 = DenseLayer(dis1, nd, W=Normal(0.02), nonlinearity=relu) print ("Dis fc2:", dis2.output_shape) disout = DenseLayer(dis2, 1, W=Normal(0.02), nonlinearity=sigmoid) print ("Dis output:", disout.output_shape) return disout
Example #11
Source File: test_layers_theano.py From visual_dynamics with MIT License | 6 votes |
def test_locally_connected2d(x_shape, num_filters, filter_size, flip_filters, batch_size=2): X_var = T.tensor4('X') l_x = L.InputLayer(shape=(None,) + x_shape, input_var=X_var, name='x') X = np.random.random((batch_size,) + x_shape).astype(theano.config.floatX) l_conv = LT.LocallyConnected2DLayer(l_x, num_filters, filter_size=filter_size, stride=1, pad='same', flip_filters=flip_filters, untie_biases=True, nonlinearity=None, b=None) conv_var = L.get_output(l_conv) conv_fn = theano.function([X_var], conv_var) tic() conv = conv_fn(X) toc("locally connected time for x_shape=%r, num_filters=%r, filter_size=%r, flip_filters=%r, batch_size=%r\n\t" % (x_shape, num_filters, filter_size, flip_filters, batch_size)) tic() loop_conv = locally_connected2d(X, l_conv.W.get_value(), flip_filters=flip_filters) toc("loop locally connected time for x_shape=%r, num_filters=%r, filter_size=%r, flip_filters=%r, batch_size=%r\n\t" % (x_shape, num_filters, filter_size, flip_filters, batch_size)) assert np.allclose(conv, loop_conv, atol=1e-6)
Example #12
Source File: models.py From recurrent-memory with GNU Lesser General Public License v3.0 | 6 votes |
def OrthoInitRecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, init_val=0.9, out_nlin=lasagne.nonlinearities.linear): # Input Layer l_in = InputLayer((batch_size, None, n_in), input_var=input_var) if mask_var==None: l_mask=None else: l_mask = InputLayer((batch_size, None), input_var=mask_var) _, seqlen, _ = l_in.input_var.shape l_in_hid = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid, W=lasagne.init.GlorotNormal(0.95), nonlinearity=lasagne.nonlinearities.linear) l_hid_hid = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, W=lasagne.init.Orthogonal(gain=init_val), nonlinearity=lasagne.nonlinearities.linear) l_rec = lasagne.layers.CustomRecurrentLayer(l_in, l_in_hid, l_hid_hid, nonlinearity=lasagne.nonlinearities.tanh, mask_input=l_mask, grad_clipping=100) # Output Layer l_shp = ReshapeLayer(l_rec, (-1, n_hid)) l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.95), nonlinearity=out_nlin) # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above. l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out)) return l_out, l_rec
Example #13
Source File: __init__.py From aenet with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_model(self): ''' Build Acoustic Event Net model :return: ''' # A architecture 41 classes nonlin = lasagne.nonlinearities.rectify net = {} net['input'] = InputLayer((None, feat_shape[0], feat_shape[1], feat_shape[2])) # channel, time. frequency # ----------- 1st layer group --------------- net['conv1a'] = ConvLayer(net['input'], num_filters=64, filter_size=(3, 3), stride=1, nonlinearity=nonlin) net['conv1b'] = ConvLayer(net['conv1a'], num_filters=64, filter_size=(3, 3), stride=1, nonlinearity=nonlin) net['pool1'] = MaxPool2DLayer(net['conv1b'], pool_size=(1, 2)) # (time, freq) # ----------- 2nd layer group --------------- net['conv2a'] = ConvLayer(net['pool1'], num_filters=128, filter_size=(3, 3), stride=1, nonlinearity=nonlin) net['conv2b'] = ConvLayer(net['conv2a'], num_filters=128, filter_size=(3, 3), stride=1, nonlinearity=nonlin) net['pool2'] = MaxPool2DLayer(net['conv2b'], pool_size=(2, 2)) # (time, freq) # ----------- fully connected layer group --------------- net['fc5'] = DenseLayer(net['pool2'], num_units=1024, nonlinearity=nonlin) net['fc6'] = DenseLayer(net['fc5'], num_units=1024, nonlinearity=nonlin) net['prob'] = DenseLayer(net['fc6'], num_units=41, nonlinearity=lasagne.nonlinearities.softmax) return net
Example #14
Source File: test_layers_theano.py From visual_dynamics with MIT License | 6 votes |
def test_channelwise_locally_connected2d(x_shape, filter_size, flip_filters, batch_size=2): X_var = T.tensor4('X') l_x = L.InputLayer(shape=(None,) + x_shape, input_var=X_var, name='x') X = np.random.random((batch_size,) + x_shape).astype(theano.config.floatX) l_conv = LT.LocallyConnected2DLayer(l_x, x_shape[0], filter_size=filter_size, channelwise=True, stride=1, pad='same', flip_filters=flip_filters, untie_biases=True, nonlinearity=None, b=None) conv_var = L.get_output(l_conv) conv_fn = theano.function([X_var], conv_var) tic() conv = conv_fn(X) toc("channelwise locally connected time for x_shape=%r, filter_size=%r, flip_filters=%r, batch_size=%r\n\t" % (x_shape, filter_size, flip_filters, batch_size)) tic() loop_conv = channelwise_locally_connected2d(X, l_conv.W.get_value(), flip_filters=flip_filters) toc("loop channelwise locally connected time for x_shape=%r, filter_size=%r, flip_filters=%r, batch_size=%r\n\t" % (x_shape, filter_size, flip_filters, batch_size)) assert np.allclose(conv, loop_conv, atol=1e-7)
Example #15
Source File: net_theano.py From visual_dynamics with MIT License | 6 votes |
def build_bilinear_net(input_shapes, X_var=None, U_var=None, X_diff_var=None, axis=1): x_shape, u_shape = input_shapes X_var = X_var or T.tensor4('X') U_var = U_var or T.matrix('U') X_diff_var = X_diff_var or T.tensor4('X_diff') X_next_var = X_var + X_diff_var l_x = L.InputLayer(shape=(None,) + x_shape, input_var=X_var) l_u = L.InputLayer(shape=(None,) + u_shape, input_var=U_var) l_x_diff_pred = LT.BilinearLayer([l_x, l_u], axis=axis) l_x_next_pred = L.ElemwiseMergeLayer([l_x, l_x_diff_pred], T.add) l_y = L.flatten(l_x) l_y_diff_pred = L.flatten(l_x_diff_pred) X_next_pred_var = lasagne.layers.get_output(l_x_next_pred) loss = ((X_next_var - X_next_pred_var) ** 2).mean(axis=0).sum() / 2. net_name = 'BilinearNet' input_vars = OrderedDict([(var.name, var) for var in [X_var, U_var, X_diff_var]]) pred_layers = OrderedDict([('y_diff_pred', l_y_diff_pred), ('y', l_y), ('x0_next_pred', l_x_next_pred)]) return net_name, input_vars, pred_layers, loss
Example #16
Source File: enhance.py From neural-enhance with GNU Affero General Public License v3.0 | 6 votes |
def __init__(self): self.network = collections.OrderedDict() self.network['img'] = InputLayer((None, 3, None, None)) self.network['seed'] = InputLayer((None, 3, None, None)) config, params = self.load_model() self.setup_generator(self.last_layer(), config) if args.train: concatenated = lasagne.layers.ConcatLayer([self.network['img'], self.network['out']], axis=0) self.setup_perceptual(concatenated) self.load_perceptual() self.setup_discriminator() self.load_generator(params) self.compile() #------------------------------------------------------------------------------------------------------------------ # Network Configuration #------------------------------------------------------------------------------------------------------------------
Example #17
Source File: eeg_cnn_lib.py From EEGLearn with GNU General Public License v2.0 | 5 votes |
def build_cnn(input_var=None, w_init=None, n_layers=(4, 2, 1), n_filters_first=32, imsize=32, n_colors=3): """ Builds a VGG style CNN network followed by a fully-connected layer and a softmax layer. Stacks are separated by a maxpool layer. Number of kernels in each layer is twice the number in previous stack. input_var: Theano variable for input to the network outputs: pointer to the output of the last layer of network (softmax) :param input_var: theano variable as input to the network :param w_init: Initial weight values :param n_layers: number of layers in each stack. An array of integers with each value corresponding to the number of layers in each stack. (e.g. [4, 2, 1] == 3 stacks with 4, 2, and 1 layers in each. :param n_filters_first: number of filters in the first layer :param imsize: Size of the image :param n_colors: Number of color channels (depth) :return: a pointer to the output of last layer """ weights = [] # Keeps the weights for all layers count = 0 # If no initial weight is given, initialize with GlorotUniform if w_init is None: w_init = [lasagne.init.GlorotUniform()] * sum(n_layers) # Input layer network = InputLayer(shape=(None, n_colors, imsize, imsize), input_var=input_var) for i, s in enumerate(n_layers): for l in range(s): network = Conv2DLayer(network, num_filters=n_filters_first * (2 ** i), filter_size=(3, 3), W=w_init[count], pad='same') count += 1 weights.append(network.W) network = MaxPool2DLayer(network, pool_size=(2, 2)) return network, weights
Example #18
Source File: models.py From recurrent-memory with GNU Lesser General Public License v3.0 | 5 votes |
def GRURecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, diag_val=0.9, offdiag_val=0.01, out_nlin=lasagne.nonlinearities.linear): # Input Layer l_in = InputLayer((batch_size, None, n_in), input_var=input_var) if mask_var==None: l_mask = None else: l_mask = InputLayer((batch_size, None), input_var=mask_var) _, seqlen, _ = l_in.input_var.shape l_rec = GRULayer(l_in, n_hid, resetgate=lasagne.layers.Gate(W_in=lasagne.init.GlorotNormal(0.05), W_hid=lasagne.init.GlorotNormal(0.05), W_cell=None, b=lasagne.init.Constant(0.)), updategate=lasagne.layers.Gate(W_in=lasagne.init.GlorotNormal(0.05), W_hid=lasagne.init.GlorotNormal(0.05), W_cell=None), hidden_update=lasagne.layers.Gate(W_in=lasagne.init.GlorotNormal(0.05), W_hid=LeInit(diag_val=diag_val, offdiag_val=offdiag_val), W_cell=None, nonlinearity=lasagne.nonlinearities.rectify), hid_init = lasagne.init.Constant(0.), backwards=False, learn_init=False, gradient_steps=-1, grad_clipping=10., unroll_scan=False, precompute_input=True, mask_input=l_mask, only_return_final=False) # Output Layer l_shp = ReshapeLayer(l_rec, (-1, n_hid)) l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.05), nonlinearity=out_nlin) # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above. l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out)) return l_out, l_rec
Example #19
Source File: models.py From recurrent-memory with GNU Lesser General Public License v3.0 | 5 votes |
def LeInitRecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, diag_val=0.9, offdiag_val=0.01, out_nlin=lasagne.nonlinearities.linear): # Input Layer l_in = InputLayer((batch_size, None, n_in), input_var=input_var) if mask_var==None: l_mask=None else: l_mask = InputLayer((batch_size, None), input_var=mask_var) _, seqlen, _ = l_in.input_var.shape l_in_hid = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid, W=lasagne.init.GlorotNormal(0.95), nonlinearity=lasagne.nonlinearities.linear) l_hid_hid = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, W=LeInit(diag_val=diag_val, offdiag_val=offdiag_val), nonlinearity=lasagne.nonlinearities.linear) l_rec = lasagne.layers.CustomRecurrentLayer(l_in, l_in_hid, l_hid_hid, nonlinearity=lasagne.nonlinearities.rectify, mask_input=l_mask, grad_clipping=100) # Output Layer l_shp = ReshapeLayer(l_rec, (-1, n_hid)) l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.95), nonlinearity=out_nlin) # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above. l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out)) return l_out, l_rec
Example #20
Source File: nn_adagrad_pca.py From kaggle_otto with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_model(self, input_dim): l_in = InputLayer(shape=(self.batch_size, input_dim)) l_hidden1 = DenseLayer(l_in, num_units=self.n_hidden, nonlinearity=rectify) l_hidden1_dropout = DropoutLayer(l_hidden1, p=self.dropout) l_hidden2 = DenseLayer(l_hidden1_dropout, num_units=self.n_hidden / 2, nonlinearity=rectify) l_hidden2_dropout = DropoutLayer(l_hidden2, p=self.dropout) l_hidden3 = DenseLayer(l_hidden2_dropout, num_units=self.n_hidden, nonlinearity=rectify) l_hidden3_dropout = DropoutLayer(l_hidden3, p=self.dropout) l_out = DenseLayer(l_hidden3_dropout, num_units=self.n_classes_, nonlinearity=softmax) return l_out
Example #21
Source File: models.py From recurrent-memory with GNU Lesser General Public License v3.0 | 5 votes |
def LeInitRecurrentWithFastWeights(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, diag_val=0.9, offdiag_val=0.01, out_nlin=lasagne.nonlinearities.linear, gamma=0.9): # Input Layer l_in = InputLayer((batch_size, None, n_in), input_var=input_var) if mask_var==None: l_mask=None else: l_mask = InputLayer((batch_size, None), input_var=mask_var) _, seqlen, _ = l_in.input_var.shape l_in_hid = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid, W=lasagne.init.GlorotNormal(0.95), nonlinearity=lasagne.nonlinearities.linear) l_hid_hid = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, W=LeInit(diag_val=diag_val, offdiag_val=offdiag_val), nonlinearity=lasagne.nonlinearities.linear) l_rec = CustomRecurrentLayerWithFastWeights(l_in, l_in_hid, l_hid_hid, nonlinearity=lasagne.nonlinearities.rectify, mask_input=l_mask, grad_clipping=100, gamma=gamma) # Output Layer l_shp = ReshapeLayer(l_rec, (-1, n_hid)) l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.95), nonlinearity=out_nlin) # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above. l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out)) return l_out, l_rec
Example #22
Source File: models.py From recurrent-memory with GNU Lesser General Public License v3.0 | 5 votes |
def TanhRecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, wscale=1.0, out_nlin=lasagne.nonlinearities.linear): # Input Layer l_in = InputLayer((batch_size, None, n_in), input_var=input_var) if mask_var == None: l_mask = None else: l_mask = InputLayer((batch_size, None), input_var=mask_var) _, seqlen, _ = l_in.input_var.shape l_in_hid = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid, W=lasagne.init.HeNormal(0.95), nonlinearity=lasagne.nonlinearities.linear) l_hid_hid = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, W=lasagne.init.HeNormal(gain=wscale), nonlinearity=lasagne.nonlinearities.linear) l_rec = lasagne.layers.CustomRecurrentLayer(l_in, l_in_hid, l_hid_hid, nonlinearity=lasagne.nonlinearities.tanh, mask_input=l_mask, grad_clipping=100) l_shp_1 = ReshapeLayer(l_rec, (-1, n_hid)) l_shp_2 = ReshapeLayer(l_hid_hid, (-1, n_hid)) l_shp = lasagne.layers.ElemwiseSumLayer((l_shp_1,l_shp_2),coeffs=(np.float32(0.2),np.float32(0.8))) # Output Layer l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.HeNormal(0.95), nonlinearity=out_nlin) # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above. l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out)) return l_out, l_rec
Example #23
Source File: bagging_nn_rmsprop.py From kaggle_otto with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_model(self, input_dim): l_in = InputLayer(shape=(self.batch_size, input_dim)) l_hidden1 = DenseLayer(l_in, num_units=self.n_hidden, nonlinearity=rectify) l_hidden1_dropout = DropoutLayer(l_hidden1, p=self.dropout) l_hidden2 = DenseLayer(l_hidden1_dropout, num_units=self.n_hidden, nonlinearity=rectify) l_hidden2_dropout = DropoutLayer(l_hidden2, p=self.dropout) l_out = DenseLayer(l_hidden2_dropout, num_units=self.n_classes_, nonlinearity=softmax) return l_out
Example #24
Source File: res_net_blocks.py From dcase_task2 with MIT License | 5 votes |
def ResNet_FullPreActivation(input_shape=(None, 3, PIXELS, PIXELS), input_var=None, n_classes=10, n=18): """ Adapted from https://github.com/Lasagne/Recipes/tree/master/papers/deep_residual_learning. Tweaked to be consistent with 'Identity Mappings in Deep Residual Networks', Kaiming He et al. 2016 (https://arxiv.org/abs/1603.05027) Formula to figure out depth: 6n + 2 """ # Building the network l_in = InputLayer(shape=input_shape, input_var=input_var) # first layer, output is 16 x 32 x 32 l = batch_norm(ConvLayer(l_in, num_filters=16, filter_size=(3, 3), stride=(1, 1), nonlinearity=rectify, pad='same', W=he_norm)) # first stack of residual blocks, output is 16 x 32 x 32 l = residual_block(l, first=True) for _ in range(1, n): l = residual_block(l) # second stack of residual blocks, output is 32 x 16 x 16 l = residual_block(l, increase_dim=True) for _ in range(1, n): l = residual_block(l) # third stack of residual blocks, output is 64 x 8 x 8 l = residual_block(l, increase_dim=True) for _ in range(1, n): l = residual_block(l) bn_post_conv = BatchNormLayer(l) bn_post_relu = NonlinearityLayer(bn_post_conv, rectify) # average pooling avg_pool = GlobalPoolLayer(bn_post_relu) # fully connected layer network = DenseLayer(avg_pool, num_units=n_classes, W=HeNormal(), nonlinearity=softmax) return network
Example #25
Source File: models.py From drmad with MIT License | 5 votes |
def __init__(self, x, y, args): self.params_theta = [] self.params_lambda = [] self.params_weight = [] if args.dataset == 'mnist': input_size = (None, 1, 28, 28) elif args.dataset == 'cifar10': input_size = (None, 3, 32, 32) else: raise AssertionError layers = [ll.InputLayer(input_size)] self.penalty = theano.shared(np.array(0.)) #conv1 layers.append(Conv2DLayerWithReg(args, layers[-1], 20, 5)) self.add_params_to_self(args, layers[-1]) layers.append(ll.MaxPool2DLayer(layers[-1], pool_size=2, stride=2)) #conv1 layers.append(Conv2DLayerWithReg(args, layers[-1], 50, 5)) self.add_params_to_self(args, layers[-1]) layers.append(ll.MaxPool2DLayer(layers[-1], pool_size=2, stride=2)) #fc1 layers.append(DenseLayerWithReg(args, layers[-1], num_units=500)) self.add_params_to_self(args, layers[-1]) #softmax layers.append(DenseLayerWithReg(args, layers[-1], num_units=10, nonlinearity=nonlinearities.softmax)) self.add_params_to_self(args, layers[-1]) self.layers = layers self.y = ll.get_output(layers[-1], x, deterministic=False) self.prediction = T.argmax(self.y, axis=1) # self.penalty = penalty if penalty != 0. else T.constant(0.) print(self.params_lambda) # time.sleep(20) # cost function self.loss = T.mean(categorical_crossentropy(self.y, y)) self.lossWithPenalty = T.add(self.loss, self.penalty) print "loss and losswithpenalty", type(self.loss), type(self.lossWithPenalty)
Example #26
Source File: nn_rmsprop_features.py From kaggle_otto with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_model(self, input_dim): l_in = InputLayer(shape=(self.batch_size, input_dim)) l_hidden1 = DenseLayer(l_in, num_units=self.n_hidden / 2, nonlinearity=rectify) l_hidden1_dropout = DropoutLayer(l_hidden1, p=self.dropout) l_hidden2 = DenseLayer(l_hidden1_dropout, num_units=self.n_hidden, nonlinearity=rectify) l_hidden2_dropout = DropoutLayer(l_hidden2, p=self.dropout) l_hidden3 = DenseLayer(l_hidden2_dropout, num_units=self.n_hidden / 2, nonlinearity=rectify) l_hidden3_dropout = DropoutLayer(l_hidden3, p=self.dropout) l_out = DenseLayer(l_hidden3_dropout, num_units=self.n_classes_, nonlinearity=softmax) return l_out
Example #27
Source File: net.py From neuralnilm with Apache License 2.0 | 5 votes |
def build_net(input_shape, layers): # Input layer layer = InputLayer(shape=input_shape) for layer_config in layers: layer_type = layer_config.pop('type') layer = layer_type(layer, **layer_config) return layer
Example #28
Source File: bagging_nn_nesterov.py From kaggle_otto with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_model(self, input_dim): l_in = InputLayer(shape=(self.batch_size, input_dim)) l_hidden1 = DenseLayer(l_in, num_units=self.n_hidden, nonlinearity=rectify) l_hidden1_dropout = DropoutLayer(l_hidden1, p=self.dropout) l_hidden2 = DenseLayer(l_hidden1_dropout, num_units=self.n_hidden, nonlinearity=rectify) l_hidden2_dropout = DropoutLayer(l_hidden2, p=self.dropout) l_out = DenseLayer(l_hidden2_dropout, num_units=self.n_classes_, nonlinearity=softmax) return l_out
Example #29
Source File: NN.py From kusanagi with MIT License | 5 votes |
def mlp(input_dims, output_dims, hidden_dims=[200]*4, batchsize=None, nonlinearities=nonlinearities.rectify, output_nonlinearity=nonlinearities.linear, W_init=lasagne.init.GlorotUniform('relu'), b_init=lasagne.init.Uniform(0.01), name='mlp', **kwargs): if not isinstance(nonlinearities, list): nonlinearities = [nonlinearities]*len(hidden_dims) if not isinstance(W_init, list): W_init = [W_init]*(len(hidden_dims)+1) if not isinstance(b_init, list): b_init = [b_init]*(len(hidden_dims)+1) network_spec = [] # input layer input_shape = (batchsize, input_dims) network_spec.append((InputLayer, dict(shape=input_shape, name=name+'_input'))) # hidden layers for i in range(len(hidden_dims)): layer_type = DenseLayer network_spec.append((layer_type, dict(num_units=hidden_dims[i], nonlinearity=nonlinearities[i], W=W_init[i], b=b_init[i], name=name+'_fc%d' % (i)))) # output layer layer_type = DenseLayer network_spec.append((layer_type, dict(num_units=output_dims, nonlinearity=output_nonlinearity, W=W_init[-1], b=b_init[-1], name=name+'_output'))) return network_spec
Example #30
Source File: nn_adagrad.py From kaggle_otto with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_model(self, input_dim): l_in = InputLayer(shape=(self.batch_size, input_dim)) l_hidden1 = DenseLayer(l_in, num_units=self.n_hidden, nonlinearity=rectify) l_hidden1_dropout = DropoutLayer(l_hidden1, p=self.dropout) l_hidden2 = DenseLayer(l_hidden1_dropout, num_units=self.n_hidden, nonlinearity=rectify) l_hidden2_dropout = DropoutLayer(l_hidden2, p=self.dropout) l_hidden3 = DenseLayer(l_hidden2_dropout, num_units=self.n_hidden, nonlinearity=rectify) l_hidden3_dropout = DropoutLayer(l_hidden3, p=self.dropout) l_out = DenseLayer(l_hidden3_dropout, num_units=self.n_classes_, nonlinearity=softmax) return l_out