Python lasagne.layers.DenseLayer() Examples
The following are 30
code examples of lasagne.layers.DenseLayer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
lasagne.layers
, or try the search function
.
Example #1
Source File: models.py From recurrent-memory with GNU Lesser General Public License v3.0 | 6 votes |
def LeInitRecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, diag_val=0.9, offdiag_val=0.01, out_nlin=lasagne.nonlinearities.linear): # Input Layer l_in = InputLayer((batch_size, None, n_in), input_var=input_var) if mask_var==None: l_mask=None else: l_mask = InputLayer((batch_size, None), input_var=mask_var) _, seqlen, _ = l_in.input_var.shape l_in_hid = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid, W=lasagne.init.GlorotNormal(0.95), nonlinearity=lasagne.nonlinearities.linear) l_hid_hid = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, W=LeInit(diag_val=diag_val, offdiag_val=offdiag_val), nonlinearity=lasagne.nonlinearities.linear) l_rec = lasagne.layers.CustomRecurrentLayer(l_in, l_in_hid, l_hid_hid, nonlinearity=lasagne.nonlinearities.rectify, mask_input=l_mask, grad_clipping=100) # Output Layer l_shp = ReshapeLayer(l_rec, (-1, n_hid)) l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.95), nonlinearity=out_nlin) # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above. l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out)) return l_out, l_rec
Example #2
Source File: models.py From recurrent-memory with GNU Lesser General Public License v3.0 | 6 votes |
def OrthoInitRecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, init_val=0.9, out_nlin=lasagne.nonlinearities.linear): # Input Layer l_in = InputLayer((batch_size, None, n_in), input_var=input_var) if mask_var==None: l_mask=None else: l_mask = InputLayer((batch_size, None), input_var=mask_var) _, seqlen, _ = l_in.input_var.shape l_in_hid = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid, W=lasagne.init.GlorotNormal(0.95), nonlinearity=lasagne.nonlinearities.linear) l_hid_hid = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, W=lasagne.init.Orthogonal(gain=init_val), nonlinearity=lasagne.nonlinearities.linear) l_rec = lasagne.layers.CustomRecurrentLayer(l_in, l_in_hid, l_hid_hid, nonlinearity=lasagne.nonlinearities.tanh, mask_input=l_mask, grad_clipping=100) # Output Layer l_shp = ReshapeLayer(l_rec, (-1, n_hid)) l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.95), nonlinearity=out_nlin) # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above. l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out)) return l_out, l_rec
Example #3
Source File: __init__.py From aenet with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_model(self): ''' Build Acoustic Event Net model :return: ''' # A architecture 41 classes nonlin = lasagne.nonlinearities.rectify net = {} net['input'] = InputLayer((None, feat_shape[0], feat_shape[1], feat_shape[2])) # channel, time. frequency # ----------- 1st layer group --------------- net['conv1a'] = ConvLayer(net['input'], num_filters=64, filter_size=(3, 3), stride=1, nonlinearity=nonlin) net['conv1b'] = ConvLayer(net['conv1a'], num_filters=64, filter_size=(3, 3), stride=1, nonlinearity=nonlin) net['pool1'] = MaxPool2DLayer(net['conv1b'], pool_size=(1, 2)) # (time, freq) # ----------- 2nd layer group --------------- net['conv2a'] = ConvLayer(net['pool1'], num_filters=128, filter_size=(3, 3), stride=1, nonlinearity=nonlin) net['conv2b'] = ConvLayer(net['conv2a'], num_filters=128, filter_size=(3, 3), stride=1, nonlinearity=nonlin) net['pool2'] = MaxPool2DLayer(net['conv2b'], pool_size=(2, 2)) # (time, freq) # ----------- fully connected layer group --------------- net['fc5'] = DenseLayer(net['pool2'], num_units=1024, nonlinearity=nonlin) net['fc6'] = DenseLayer(net['fc5'], num_units=1024, nonlinearity=nonlin) net['prob'] = DenseLayer(net['fc6'], num_units=41, nonlinearity=lasagne.nonlinearities.softmax) return net
Example #4
Source File: conv_sup_cc_4ch.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_network_from_ae(classn): input_var = T.tensor4('inputs'); aug_var = T.matrix('aug_var'); target_var = T.matrix('targets'); ae = pickle.load(open('model_4ch/conv_ae.pkl', 'rb')); input_layer_index = map(lambda pair : pair[0], ae.layers).index('input'); first_layer = ae.get_all_layers()[input_layer_index + 1]; input_layer = layers.InputLayer(shape=(None, 4, 32, 32), input_var = input_var); first_layer.input_layer = input_layer; encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer'); encode_layer = ae.get_all_layers()[encode_layer_index]; aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var); cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1); hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify); network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid); return network, encode_layer, input_var, aug_var, target_var;
Example #5
Source File: NN.py From kusanagi with MIT License | 6 votes |
def dropout_mlp(input_dims, output_dims, hidden_dims=[200]*4, batchsize=None, nonlinearities=nonlinearities.rectify, output_nonlinearity=nonlinearities.linear, W_init=lasagne.init.GlorotUniform('relu'), b_init=lasagne.init.Uniform(0.01), p=0.5, p_input=0.2, dropout_class=layers.DenseDropoutLayer, name='dropout_mlp'): if not isinstance(p, list): p = [p]*(len(hidden_dims)) p = [p_input] + p network_spec = mlp(input_dims, output_dims, hidden_dims, batchsize, nonlinearities, output_nonlinearity, W_init, b_init, name) # first layer is input layer, we skip it for i in range(len(p)): layer_class, layer_args = network_spec[i+1] if layer_class == DenseLayer and p[i] != 0: layer_args['p'] = p[i] network_spec[i+1] = (dropout_class, layer_args) return network_spec
Example #6
Source File: adda_network.py From adda_mnist64 with MIT License | 6 votes |
def network_classifier(self, input_var): network = {} network['classifier/input'] = InputLayer(shape=(None, 3, 64, 64), input_var=input_var, name='classifier/input') network['classifier/conv1'] = Conv2DLayer(network['classifier/input'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv1') network['classifier/pool1'] = MaxPool2DLayer(network['classifier/conv1'], pool_size=2, stride=2, pad=0, name='classifier/pool1') network['classifier/conv2'] = Conv2DLayer(network['classifier/pool1'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv2') network['classifier/pool2'] = MaxPool2DLayer(network['classifier/conv2'], pool_size=2, stride=2, pad=0, name='classifier/pool2') network['classifier/conv3'] = Conv2DLayer(network['classifier/pool2'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv3') network['classifier/pool3'] = MaxPool2DLayer(network['classifier/conv3'], pool_size=2, stride=2, pad=0, name='classifier/pool3') network['classifier/conv4'] = Conv2DLayer(network['classifier/pool3'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv4') network['classifier/pool4'] = MaxPool2DLayer(network['classifier/conv4'], pool_size=2, stride=2, pad=0, name='classifier/pool4') network['classifier/dense1'] = DenseLayer(network['classifier/pool4'], num_units=64, nonlinearity=rectify, name='classifier/dense1') network['classifier/output'] = DenseLayer(network['classifier/dense1'], num_units=10, nonlinearity=softmax, name='classifier/output') return network
Example #7
Source File: models_uncond.py From EvolutionaryGAN with MIT License | 6 votes |
def build_discriminator_128(image=None,ndf=128): lrelu = LeakyRectify(0.2) # input: images InputImg = InputLayer(shape=(None, 3, 128, 128), input_var=image) print ("Dis Img_input:", InputImg.output_shape) # Conv Layer dis1 = Conv2DLayer(InputImg, ndf, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu) print ("Dis conv1:", dis1.output_shape) # Conv Layer dis2 = batch_norm(Conv2DLayer(dis1, ndf*2, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu)) print ("Dis conv2:", dis2.output_shape) # Conv Layer dis3 = batch_norm(Conv2DLayer(dis2, ndf*4, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu)) print ("Dis conv3:", dis3.output_shape) # Conv Layer dis4 = batch_norm(Conv2DLayer(dis3, ndf*8, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu)) print ("Dis conv3:", dis4.output_shape) # Conv Layer dis5 = batch_norm(Conv2DLayer(dis4, ndf*16, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu)) print ("Dis conv4:", dis5.output_shape) # Conv Layer dis6 = DenseLayer(dis5, 1, W=Normal(0.02), nonlinearity=sigmoid) print ("Dis output:", dis6.output_shape) return dis6
Example #8
Source File: models_uncond.py From EvolutionaryGAN with MIT License | 6 votes |
def build_discriminator_toy(image=None, nd=512, GP_norm=None): Input = InputLayer(shape=(None, 2), input_var=image) print ("Dis input:", Input.output_shape) dis0 = DenseLayer(Input, nd, W=Normal(0.02), nonlinearity=relu) print ("Dis fc0:", dis0.output_shape) if GP_norm is True: dis1 = DenseLayer(dis0, nd, W=Normal(0.02), nonlinearity=relu) else: dis1 = batch_norm(DenseLayer(dis0, nd, W=Normal(0.02), nonlinearity=relu)) print ("Dis fc1:", dis1.output_shape) if GP_norm is True: dis2 = batch_norm(DenseLayer(dis1, nd, W=Normal(0.02), nonlinearity=relu)) else: dis2 = DenseLayer(dis1, nd, W=Normal(0.02), nonlinearity=relu) print ("Dis fc2:", dis2.output_shape) disout = DenseLayer(dis2, 1, W=Normal(0.02), nonlinearity=sigmoid) print ("Dis output:", disout.output_shape) return disout
Example #9
Source File: models_uncond.py From EvolutionaryGAN with MIT License | 6 votes |
def build_generator_32(noise=None, ngf=128): # noise input InputNoise = InputLayer(shape=(None, 100), input_var=noise) #FC Layer gnet0 = DenseLayer(InputNoise, ngf*4*4*4, W=Normal(0.02), nonlinearity=relu) print ("Gen fc1:", gnet0.output_shape) #Reshape Layer gnet1 = ReshapeLayer(gnet0,([0],ngf*4,4,4)) print ("Gen rs1:", gnet1.output_shape) # DeConv Layer gnet2 = Deconv2DLayer(gnet1, ngf*2, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu) print ("Gen deconv1:", gnet2.output_shape) # DeConv Layer gnet3 = Deconv2DLayer(gnet2, ngf, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu) print ("Gen deconv2:", gnet3.output_shape) # DeConv Layer gnet4 = Deconv2DLayer(gnet3, 3, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=tanh) print ("Gen output:", gnet4.output_shape) return gnet4
Example #10
Source File: models_uncond.py From EvolutionaryGAN with MIT License | 6 votes |
def build_discriminator_32(image=None,ndf=128): lrelu = LeakyRectify(0.2) # input: images InputImg = InputLayer(shape=(None, 3, 32, 32), input_var=image) print ("Dis Img_input:", InputImg.output_shape) # Conv Layer dis1 = Conv2DLayer(InputImg, ndf, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu) print ("Dis conv1:", dis1.output_shape) # Conv Layer dis2 = batch_norm(Conv2DLayer(dis1, ndf*2, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu)) print ("Dis conv2:", dis2.output_shape) # Conv Layer dis3 = batch_norm(Conv2DLayer(dis2, ndf*4, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu)) print ("Dis conv3:", dis3.output_shape) # Conv Layer dis4 = DenseLayer(dis3, 1, W=Normal(0.02), nonlinearity=sigmoid) print ("Dis output:", dis4.output_shape) return dis4
Example #11
Source File: models_uncond.py From EvolutionaryGAN with MIT License | 6 votes |
def build_generator_64(noise=None, ngf=128): # noise input InputNoise = InputLayer(shape=(None, 100), input_var=noise) #FC Layer gnet0 = DenseLayer(InputNoise, ngf*8*4*4, W=Normal(0.02), nonlinearity=relu) print ("Gen fc1:", gnet0.output_shape) #Reshape Layer gnet1 = ReshapeLayer(gnet0,([0],ngf*8,4,4)) print ("Gen rs1:", gnet1.output_shape) # DeConv Layer gnet2 = Deconv2DLayer(gnet1, ngf*8, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu) print ("Gen deconv2:", gnet2.output_shape) # DeConv Layer gnet3 = Deconv2DLayer(gnet2, ngf*4, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu) print ("Gen deconv3:", gnet3.output_shape) # DeConv Layer gnet4 = Deconv2DLayer(gnet3, ngf*4, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu) print ("Gen deconv4:", gnet4.output_shape) # DeConv Layer gnet5 = Deconv2DLayer(gnet4, ngf*2, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu) print ("Gen deconv5:", gnet5.output_shape) # DeConv Layer gnet6 = Deconv2DLayer(gnet5, 3, (3,3), (1,1), crop='same', W=Normal(0.02),nonlinearity=tanh) print ("Gen output:", gnet6.output_shape) return gnet6
Example #12
Source File: nn_adagrad.py From kaggle_otto with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_model(self, input_dim): l_in = InputLayer(shape=(self.batch_size, input_dim)) l_hidden1 = DenseLayer(l_in, num_units=self.n_hidden, nonlinearity=rectify) l_hidden1_dropout = DropoutLayer(l_hidden1, p=self.dropout) l_hidden2 = DenseLayer(l_hidden1_dropout, num_units=self.n_hidden, nonlinearity=rectify) l_hidden2_dropout = DropoutLayer(l_hidden2, p=self.dropout) l_hidden3 = DenseLayer(l_hidden2_dropout, num_units=self.n_hidden, nonlinearity=rectify) l_hidden3_dropout = DropoutLayer(l_hidden3, p=self.dropout) l_out = DenseLayer(l_hidden3_dropout, num_units=self.n_classes_, nonlinearity=softmax) return l_out
Example #13
Source File: nn_rmsprop_features.py From kaggle_otto with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_model(self, input_dim): l_in = InputLayer(shape=(self.batch_size, input_dim)) l_hidden1 = DenseLayer(l_in, num_units=self.n_hidden / 2, nonlinearity=rectify) l_hidden1_dropout = DropoutLayer(l_hidden1, p=self.dropout) l_hidden2 = DenseLayer(l_hidden1_dropout, num_units=self.n_hidden, nonlinearity=rectify) l_hidden2_dropout = DropoutLayer(l_hidden2, p=self.dropout) l_hidden3 = DenseLayer(l_hidden2_dropout, num_units=self.n_hidden / 2, nonlinearity=rectify) l_hidden3_dropout = DropoutLayer(l_hidden3, p=self.dropout) l_out = DenseLayer(l_hidden3_dropout, num_units=self.n_classes_, nonlinearity=softmax) return l_out
Example #14
Source File: models.py From recurrent-memory with GNU Lesser General Public License v3.0 | 5 votes |
def TanhRecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, wscale=1.0, out_nlin=lasagne.nonlinearities.linear): # Input Layer l_in = InputLayer((batch_size, None, n_in), input_var=input_var) if mask_var == None: l_mask = None else: l_mask = InputLayer((batch_size, None), input_var=mask_var) _, seqlen, _ = l_in.input_var.shape l_in_hid = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid, W=lasagne.init.HeNormal(0.95), nonlinearity=lasagne.nonlinearities.linear) l_hid_hid = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, W=lasagne.init.HeNormal(gain=wscale), nonlinearity=lasagne.nonlinearities.linear) l_rec = lasagne.layers.CustomRecurrentLayer(l_in, l_in_hid, l_hid_hid, nonlinearity=lasagne.nonlinearities.tanh, mask_input=l_mask, grad_clipping=100) l_shp_1 = ReshapeLayer(l_rec, (-1, n_hid)) l_shp_2 = ReshapeLayer(l_hid_hid, (-1, n_hid)) l_shp = lasagne.layers.ElemwiseSumLayer((l_shp_1,l_shp_2),coeffs=(np.float32(0.2),np.float32(0.8))) # Output Layer l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.HeNormal(0.95), nonlinearity=out_nlin) # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above. l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out)) return l_out, l_rec
Example #15
Source File: models.py From recurrent-memory with GNU Lesser General Public License v3.0 | 5 votes |
def LeInitRecurrentWithFastWeights(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, diag_val=0.9, offdiag_val=0.01, out_nlin=lasagne.nonlinearities.linear, gamma=0.9): # Input Layer l_in = InputLayer((batch_size, None, n_in), input_var=input_var) if mask_var==None: l_mask=None else: l_mask = InputLayer((batch_size, None), input_var=mask_var) _, seqlen, _ = l_in.input_var.shape l_in_hid = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid, W=lasagne.init.GlorotNormal(0.95), nonlinearity=lasagne.nonlinearities.linear) l_hid_hid = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, W=LeInit(diag_val=diag_val, offdiag_val=offdiag_val), nonlinearity=lasagne.nonlinearities.linear) l_rec = CustomRecurrentLayerWithFastWeights(l_in, l_in_hid, l_hid_hid, nonlinearity=lasagne.nonlinearities.rectify, mask_input=l_mask, grad_clipping=100, gamma=gamma) # Output Layer l_shp = ReshapeLayer(l_rec, (-1, n_hid)) l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.95), nonlinearity=out_nlin) # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above. l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out)) return l_out, l_rec
Example #16
Source File: models.py From recurrent-memory with GNU Lesser General Public License v3.0 | 5 votes |
def GRURecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, diag_val=0.9, offdiag_val=0.01, out_nlin=lasagne.nonlinearities.linear): # Input Layer l_in = InputLayer((batch_size, None, n_in), input_var=input_var) if mask_var==None: l_mask = None else: l_mask = InputLayer((batch_size, None), input_var=mask_var) _, seqlen, _ = l_in.input_var.shape l_rec = GRULayer(l_in, n_hid, resetgate=lasagne.layers.Gate(W_in=lasagne.init.GlorotNormal(0.05), W_hid=lasagne.init.GlorotNormal(0.05), W_cell=None, b=lasagne.init.Constant(0.)), updategate=lasagne.layers.Gate(W_in=lasagne.init.GlorotNormal(0.05), W_hid=lasagne.init.GlorotNormal(0.05), W_cell=None), hidden_update=lasagne.layers.Gate(W_in=lasagne.init.GlorotNormal(0.05), W_hid=LeInit(diag_val=diag_val, offdiag_val=offdiag_val), W_cell=None, nonlinearity=lasagne.nonlinearities.rectify), hid_init = lasagne.init.Constant(0.), backwards=False, learn_init=False, gradient_steps=-1, grad_clipping=10., unroll_scan=False, precompute_input=True, mask_input=l_mask, only_return_final=False) # Output Layer l_shp = ReshapeLayer(l_rec, (-1, n_hid)) l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.05), nonlinearity=out_nlin) # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above. l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out)) return l_out, l_rec
Example #17
Source File: models.py From recurrent-memory with GNU Lesser General Public License v3.0 | 5 votes |
def LeInitRecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, diag_val=0.9, offdiag_val=0.01, out_nlin=lasagne.nonlinearities.linear): # Input Layer l_in = InputLayer((batch_size, None, n_in), input_var=input_var) if mask_var==None: l_mask=None else: l_mask = InputLayer((batch_size, None), input_var=mask_var) _, seqlen, _ = l_in.input_var.shape l_in_hid = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid, W=lasagne.init.GlorotNormal(0.95), nonlinearity=lasagne.nonlinearities.linear) l_hid_hid = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, W=LeInit(diag_val=diag_val, offdiag_val=offdiag_val), nonlinearity=lasagne.nonlinearities.linear) l_rec = lasagne.layers.CustomRecurrentLayer(l_in, l_in_hid, l_hid_hid, nonlinearity=lasagne.nonlinearities.rectify, mask_input=l_mask, grad_clipping=100) # Output Layer l_shp = ReshapeLayer(l_rec, (-1, n_hid)) l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.95), nonlinearity=out_nlin) # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above. l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out)) return l_out, l_rec
Example #18
Source File: models.py From recurrent-memory with GNU Lesser General Public License v3.0 | 5 votes |
def LeInitRecurrentWithFastWeights(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, diag_val=0.9, offdiag_val=0.01, out_nlin=lasagne.nonlinearities.linear, gamma=0.9): # Input Layer l_in = InputLayer((batch_size, None, n_in), input_var=input_var) if mask_var==None: l_mask=None else: l_mask = InputLayer((batch_size, None), input_var=mask_var) _, seqlen, _ = l_in.input_var.shape l_in_hid = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid, W=lasagne.init.GlorotNormal(0.95), nonlinearity=lasagne.nonlinearities.linear) l_hid_hid = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, W=LeInit(diag_val=diag_val, offdiag_val=offdiag_val), nonlinearity=lasagne.nonlinearities.linear) l_rec = CustomRecurrentLayerWithFastWeights(l_in, l_in_hid, l_hid_hid, nonlinearity=lasagne.nonlinearities.rectify, mask_input=l_mask, grad_clipping=100, gamma=gamma) # Output Layer l_shp = ReshapeLayer(l_rec, (-1, n_hid)) l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.95), nonlinearity=out_nlin) # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above. l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out)) return l_out, l_rec
Example #19
Source File: bagging_nn_nesterov.py From kaggle_otto with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_model(self, input_dim): l_in = InputLayer(shape=(self.batch_size, input_dim)) l_hidden1 = DenseLayer(l_in, num_units=self.n_hidden, nonlinearity=rectify) l_hidden1_dropout = DropoutLayer(l_hidden1, p=self.dropout) l_hidden2 = DenseLayer(l_hidden1_dropout, num_units=self.n_hidden, nonlinearity=rectify) l_hidden2_dropout = DropoutLayer(l_hidden2, p=self.dropout) l_out = DenseLayer(l_hidden2_dropout, num_units=self.n_classes_, nonlinearity=softmax) return l_out
Example #20
Source File: nn_adagrad_pca.py From kaggle_otto with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_model(self, input_dim): l_in = InputLayer(shape=(self.batch_size, input_dim)) l_hidden1 = DenseLayer(l_in, num_units=self.n_hidden, nonlinearity=rectify) l_hidden1_dropout = DropoutLayer(l_hidden1, p=self.dropout) l_hidden2 = DenseLayer(l_hidden1_dropout, num_units=self.n_hidden, nonlinearity=rectify) l_hidden2_dropout = DropoutLayer(l_hidden2, p=self.dropout) l_hidden3 = DenseLayer(l_hidden2_dropout, num_units=self.n_hidden, nonlinearity=rectify) l_hidden3_dropout = DropoutLayer(l_hidden3, p=self.dropout) l_out = DenseLayer(l_hidden3_dropout, num_units=self.n_classes_, nonlinearity=softmax) return l_out
Example #21
Source File: deep_conv_classification_alt51_heatmap.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_network_from_ae(classn): input_var = T.tensor4('input_var'); target_var = T.imatrix('targets'); layer = layers.InputLayer(shape=(None, 3, PS, PS), input_var=input_var); layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 120, filter_size=(4,4), stride=1, nonlinearity=leaky_rectify)); layer = layers.MaxPool2DLayer(layer, pool_size=(3,3), stride=2); layer = batch_norm(layers.Conv2DLayer(layer, 240, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = layers.Pool2DLayer(layer, pool_size=(20,20), stride=20, mode='average_inc_pad'); network = layers.DenseLayer(layer, classn, nonlinearity=sigmoid); return network, input_var, target_var;
Example #22
Source File: nn_adagrad_pca.py From kaggle_otto with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_model(self, input_dim): l_in = InputLayer(shape=(self.batch_size, input_dim)) l_hidden1 = DenseLayer(l_in, num_units=self.n_hidden, nonlinearity=rectify) l_hidden1_dropout = DropoutLayer(l_hidden1, p=self.dropout) l_hidden2 = DenseLayer(l_hidden1_dropout, num_units=self.n_hidden / 2, nonlinearity=rectify) l_hidden2_dropout = DropoutLayer(l_hidden2, p=self.dropout) l_hidden3 = DenseLayer(l_hidden2_dropout, num_units=self.n_hidden, nonlinearity=rectify) l_hidden3_dropout = DropoutLayer(l_hidden3, p=self.dropout) l_out = DenseLayer(l_hidden3_dropout, num_units=self.n_classes_, nonlinearity=softmax) return l_out
Example #23
Source File: models.py From recurrent-memory with GNU Lesser General Public License v3.0 | 5 votes |
def GRURecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, diag_val=0.9, offdiag_val=0.01, out_nlin=lasagne.nonlinearities.linear): # Input Layer l_in = InputLayer((batch_size, None, n_in), input_var=input_var) if mask_var==None: l_mask = None else: l_mask = InputLayer((batch_size, None), input_var=mask_var) _, seqlen, _ = l_in.input_var.shape l_rec = GRULayer(l_in, n_hid, resetgate=lasagne.layers.Gate(W_in=lasagne.init.GlorotNormal(0.05), W_hid=lasagne.init.GlorotNormal(0.05), W_cell=None, b=lasagne.init.Constant(0.)), updategate=lasagne.layers.Gate(W_in=lasagne.init.GlorotNormal(0.05), W_hid=lasagne.init.GlorotNormal(0.05), W_cell=None), hidden_update=lasagne.layers.Gate(W_in=lasagne.init.GlorotNormal(0.05), W_hid=LeInit(diag_val=diag_val, offdiag_val=offdiag_val), W_cell=None, nonlinearity=lasagne.nonlinearities.rectify), hid_init = lasagne.init.Constant(0.), backwards=False, learn_init=False, gradient_steps=-1, grad_clipping=10., unroll_scan=False, precompute_input=True, mask_input=l_mask, only_return_final=False) # Output Layer l_shp = ReshapeLayer(l_rec, (-1, n_hid)) l_dense = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.05), nonlinearity=out_nlin) # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above. l_out = ReshapeLayer(l_dense, (batch_size, seqlen, n_out)) return l_out, l_rec
Example #24
Source File: NN.py From kusanagi with MIT License | 5 votes |
def mlp(input_dims, output_dims, hidden_dims=[200]*4, batchsize=None, nonlinearities=nonlinearities.rectify, output_nonlinearity=nonlinearities.linear, W_init=lasagne.init.GlorotUniform('relu'), b_init=lasagne.init.Uniform(0.01), name='mlp', **kwargs): if not isinstance(nonlinearities, list): nonlinearities = [nonlinearities]*len(hidden_dims) if not isinstance(W_init, list): W_init = [W_init]*(len(hidden_dims)+1) if not isinstance(b_init, list): b_init = [b_init]*(len(hidden_dims)+1) network_spec = [] # input layer input_shape = (batchsize, input_dims) network_spec.append((InputLayer, dict(shape=input_shape, name=name+'_input'))) # hidden layers for i in range(len(hidden_dims)): layer_type = DenseLayer network_spec.append((layer_type, dict(num_units=hidden_dims[i], nonlinearity=nonlinearities[i], W=W_init[i], b=b_init[i], name=name+'_fc%d' % (i)))) # output layer layer_type = DenseLayer network_spec.append((layer_type, dict(num_units=output_dims, nonlinearity=output_nonlinearity, W=W_init[-1], b=b_init[-1], name=name+'_output'))) return network_spec
Example #25
Source File: deep_conv_classification_alt55.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_network_from_ae(classn): input_var = T.tensor4('input_var'); target_var = T.imatrix('targets'); layer = layers.InputLayer(shape=(None, 3, PS, PS), input_var=input_var); layer = (layers.Conv2DLayer(layer, 100, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 100, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 120, filter_size=(4,4), stride=1, nonlinearity=leaky_rectify)); layer = layers.MaxPool2DLayer(layer, pool_size=(3,3), stride=2); layer = (layers.Conv2DLayer(layer, 240, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = layers.Pool2DLayer(layer, pool_size=(20,20), stride=20, mode='average_inc_pad'); network = layers.DenseLayer(layer, classn, nonlinearity=sigmoid); return network, input_var, target_var;
Example #26
Source File: deep_conv_classification_alt51_luad10_luad10in20_brca10x1_heatmap.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_network_from_ae(classn): input_var = T.tensor4('input_var'); target_var = T.imatrix('targets'); layer = layers.InputLayer(shape=(None, 3, PS, PS), input_var=input_var); layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 120, filter_size=(4,4), stride=1, nonlinearity=leaky_rectify)); layer = layers.MaxPool2DLayer(layer, pool_size=(3,3), stride=2); layer = batch_norm(layers.Conv2DLayer(layer, 240, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = layers.Pool2DLayer(layer, pool_size=(20,20), stride=20, mode='average_inc_pad'); network = layers.DenseLayer(layer, classn, nonlinearity=sigmoid); return network, input_var, target_var;
Example #27
Source File: deep_conv_classification_alt56.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_network_from_ae(classn): input_var = T.tensor4('input_var'); target_var = T.imatrix('targets'); layer = layers.InputLayer(shape=(None, 3, PS, PS), input_var=input_var); layer = (layers.Conv2DLayer(layer, 100, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 100, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 120, filter_size=(4,4), stride=1, nonlinearity=leaky_rectify)); layer = layers.MaxPool2DLayer(layer, pool_size=(3,3), stride=2); layer = (layers.Conv2DLayer(layer, 240, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = (layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = layers.Pool2DLayer(layer, pool_size=(20,20), stride=20, mode='average_inc_pad'); network = layers.DenseLayer(layer, classn, nonlinearity=sigmoid); return network, input_var, target_var;
Example #28
Source File: deep_conv_classification_alt51_luad10_luad10in20_brca10x2_heatmap.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_network_from_ae(classn): input_var = T.tensor4('input_var'); target_var = T.imatrix('targets'); layer = layers.InputLayer(shape=(None, 3, PS, PS), input_var=input_var); layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 120, filter_size=(4,4), stride=1, nonlinearity=leaky_rectify)); layer = layers.MaxPool2DLayer(layer, pool_size=(3,3), stride=2); layer = batch_norm(layers.Conv2DLayer(layer, 240, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = layers.Pool2DLayer(layer, pool_size=(20,20), stride=20, mode='average_inc_pad'); network = layers.DenseLayer(layer, classn, nonlinearity=sigmoid); return network, input_var, target_var;
Example #29
Source File: deep_conv_classification_alt51_luad10in20_brca10.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_network_from_ae(classn): input_var = T.tensor4('input_var'); target_var = T.imatrix('targets'); layer = layers.InputLayer(shape=(None, 3, PS, PS), input_var=input_var); layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 120, filter_size=(4,4), stride=1, nonlinearity=leaky_rectify)); layer = layers.MaxPool2DLayer(layer, pool_size=(3,3), stride=2); layer = batch_norm(layers.Conv2DLayer(layer, 240, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = layers.Pool2DLayer(layer, pool_size=(20,20), stride=20, mode='average_inc_pad'); network = layers.DenseLayer(layer, classn, nonlinearity=sigmoid); return network, input_var, target_var;
Example #30
Source File: deep_conv_classification_alt51_luad10_luad10in20_brca10x1.py From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License | 5 votes |
def build_network_from_ae(classn): input_var = T.tensor4('input_var'); target_var = T.imatrix('targets'); layer = layers.InputLayer(shape=(None, 3, PS, PS), input_var=input_var); layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 120, filter_size=(4,4), stride=1, nonlinearity=leaky_rectify)); layer = layers.MaxPool2DLayer(layer, pool_size=(3,3), stride=2); layer = batch_norm(layers.Conv2DLayer(layer, 240, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 320, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = batch_norm(layers.Conv2DLayer(layer, 480, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify)); layer = layers.Pool2DLayer(layer, pool_size=(20,20), stride=20, mode='average_inc_pad'); network = layers.DenseLayer(layer, classn, nonlinearity=sigmoid); return network, input_var, target_var;