Python seaborn.xkcd_rgb() Examples
The following are 6
code examples of seaborn.xkcd_rgb().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
seaborn
, or try the search function
.
Example #1
Source File: experiment.py From double-dqn with MIT License | 6 votes |
def plot_evaluation_episode_reward(): pylab.clf() sns.set_context("poster") pylab.plot(0, 0) episodes = [0] average_scores = [0] median_scores = [0] for n in xrange(len(csv_evaluation)): params = csv_evaluation[n] episodes.append(params[0]) average_scores.append(params[1]) median_scores.append(params[2]) pylab.plot(episodes, average_scores, sns.xkcd_rgb["windows blue"], lw=2) pylab.xlabel("episodes") pylab.ylabel("average score") pylab.savefig("%s/evaluation_episode_average_reward.png" % args.plot_dir) pylab.clf() pylab.plot(0, 0) pylab.plot(episodes, median_scores, sns.xkcd_rgb["windows blue"], lw=2) pylab.xlabel("episodes") pylab.ylabel("median score") pylab.savefig("%s/evaluation_episode_median_reward.png" % args.plot_dir)
Example #2
Source File: RnaseqqcReport.py From CGATPipelines with MIT License | 6 votes |
def getColorBar(self, data): # factors are the columns after the total number of samples factors = data.iloc[:, data.shape[0]:] unique = set(factors.iloc[:, 0]) # select a random set of colours from the xkcd palette random.seed(5648546) xkcd = random.sample(list(seaborn.xkcd_rgb.keys()), len(unique)) col_dict = dict(list(zip(unique, xkcd))) cols = [] for i in range(0, len(factors.index)): cols.append(seaborn.xkcd_rgb[col_dict[factors.iloc[i, 0]]]) return cols, factors, unique, xkcd
Example #3
Source File: RnaseqqcReport.py From CGATPipelines with MIT License | 6 votes |
def __call__(self, data, path): colorbar, factors, unique, xkcd = self.getColorBar(data) n_samples = data.shape[0] data = data.iloc[:, :n_samples] col_dict = dict(list(zip(unique, xkcd))) print(data.head()) seaborn.set(font_scale=.5) ax = seaborn.clustermap(data, row_colors=colorbar, col_colors=colorbar) plt.setp(ax.ax_heatmap.yaxis.set_visible(False)) for label in unique: ax.ax_col_dendrogram.bar( 0, 0, color=seaborn.xkcd_rgb[col_dict[label]], label=label, linewidth=0) ax.ax_col_dendrogram.legend(loc="center", ncol=len(unique)) return ResultBlocks(ResultBlock( '''#$mpl %i$#\n''' % ax.cax.figure.number, title='ClusterMapPlot'))
Example #4
Source File: experiment.py From double-dqn with MIT License | 5 votes |
def plot_episode_reward(): pylab.clf() sns.set_context("poster") pylab.plot(0, 0) episodes = [0] scores = [0] for n in xrange(len(csv_episode)): params = csv_episode[n] episodes.append(params[0]) scores.append(params[1]) pylab.plot(episodes, scores, sns.xkcd_rgb["windows blue"], lw=2) pylab.xlabel("episodes") pylab.ylabel("score") pylab.savefig("%s/episode_reward.png" % args.plot_dir)
Example #5
Source File: experiment.py From double-dqn with MIT License | 5 votes |
def plot_training_episode_highscore(): pylab.clf() sns.set_context("poster") pylab.plot(0, 0) episodes = [0] highscore = [0] for n in xrange(len(csv_training_highscore)): params = csv_training_highscore[n] episodes.append(params[0]) highscore.append(params[1]) pylab.plot(episodes, highscore, sns.xkcd_rgb["windows blue"], lw=2) pylab.xlabel("episodes") pylab.ylabel("highscore") pylab.savefig("%s/training_episode_highscore.png" % args.plot_dir)
Example #6
Source File: active.py From chemml with BSD 3-Clause "New" or "Revised" License | 4 votes |
def _visualize_learning_curve(self): """plot #3 : The learning curve of results """ import matplotlib matplotlib.use('Agg') import seaborn as sns import matplotlib.pyplot as plt # data preparation algorithm = ['EMC'] * 3 * len(self._results) mae = list(self.results['mae']) mae += list(self.results['mae'] + self.results['mae_std']) mae += list(self.results['mae'] - self.results['mae_std']) size = list(self.results['num_training']) * 3 if len(self._random_results) > 0 : pad_size = len(self._results) - len(self._random_results) algorithm += ['Random'] * 3 * len(self._results) mae += list(self.random_results['mae']) mae += list(self.random_results['mae'] + self.random_results['mae_std']) + [0] * pad_size mae += list(self.random_results['mae'] - self.random_results['mae_std']) + [0] * pad_size size += list(self.results['num_training']) * 3 # dataframe dp = pd.DataFrame() dp['Algorithm'] = algorithm dp['Mean Absolute Error'] = mae dp['Training Size'] = size # figures sns.set_style('whitegrid') fig = plt.figure() ax = sns.lineplot(x='Training Size', y='Mean Absolute Error', style='Algorithm', hue='Algorithm', markers={'EMC': 'o', 'Random': 's'}, palette={'EMC': sns.xkcd_rgb["denim blue"], 'Random': sns.xkcd_rgb["pale red"]}, data=dp, ) # font size for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(14) return fig