Python seaborn.PairGrid() Examples
The following are 7
code examples of seaborn.PairGrid().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
seaborn
, or try the search function
.
Example #1
Source File: visualizations.py From Brancher with MIT License | 7 votes |
def plot_posterior(model, variables, number_samples=1000): # Get samples sample = model.get_sample(number_samples) post_sample = model.get_posterior_sample(number_samples) # Join samples sample["Mode"] = "Prior" post_sample["Mode"] = "Posterior" subsample = sample[variables + ["Mode"]] post_subsample = post_sample[variables + ["Mode"]] joint_subsample = subsample.append(post_subsample) # Plot posterior warnings.filterwarnings('ignore') g = sns.PairGrid(joint_subsample, hue="Mode") g = g.map_offdiag(sns.kdeplot) g = g.map_diag(sns.kdeplot, lw=3, shade=True) g = g.add_legend() warnings.filterwarnings('default')
Example #2
Source File: visualizations.py From Brancher with MIT License | 6 votes |
def plot_posterior_histogram(model, variables, number_samples=300): #TODO: fix code duplication # Get samples sample = model.get_sample(number_samples) post_sample = model.get_posterior_sample(number_samples) # Join samples sample["Mode"] = "Prior" post_sample["Mode"] = "Posterior" subsample = sample[variables + ["Mode"]] post_subsample = post_sample[variables + ["Mode"]] joint_subsample = subsample.append(post_subsample) # Plot posterior warnings.filterwarnings('ignore') g = sns.PairGrid(joint_subsample, hue="Mode") g = g.map_offdiag(sns.distplot) g = g.map_diag(sns.distplot) g = g.add_legend() warnings.filterwarnings('default')
Example #3
Source File: plotting.py From fitbit-analyzer with Apache License 2.0 | 6 votes |
def plotCorrelation(stats): #columnsToDrop = ['sleep_interval_max_len', 'sleep_interval_min_len', # 'sleep_interval_avg_len', 'sleep_inefficiency', # 'sleep_hours', 'total_hours'] #stats = stats.drop(columnsToDrop, axis=1) g = sns.PairGrid(stats) def corrfunc(x, y, **kws): r, p = scipystats.pearsonr(x, y) ax = plt.gca() ax.annotate("r = {:.2f}".format(r),xy=(.1, .9), xycoords=ax.transAxes) ax.annotate("p = {:.2f}".format(p),xy=(.2, .8), xycoords=ax.transAxes) if p>0.04: ax.patch.set_alpha(0.1) g.map_upper(plt.scatter) g.map_diag(plt.hist) g.map_lower(sns.kdeplot, cmap="Blues_d") g.map_upper(corrfunc) sns.plt.show()
Example #4
Source File: distanceWeightStatistic.py From python-urbanPlanning with MIT License | 6 votes |
def geoValueWeightedVisulization(valueDes): valueDes["ID"]=valueDes.index sns.set(style="whitegrid") # Make the PairGrid extractedColumns=["count","mean","std","max"] g=sns.PairGrid(valueDes.sort_values("count", ascending=False),x_vars=extractedColumns, y_vars=["ID"],height=10, aspect=.25) # Draw a dot plot using the stripplot function g.map(sns.stripplot, size=10, orient="h",palette="ch:s=1,r=-.1,h=1_r", linewidth=1, edgecolor="w") # Use the same x axis limits on all columns and add better labels g.set(xlabel="value", ylabel="") #g.set(xlim=(0, 25), xlabel="Crashes", ylabel="") # Use semantically meaningful titles for the columns titles=valueDes.columns.tolist() for ax, title in zip(g.axes.flat, titles): # Set a different title for each axes ax.set(title=title) # Make the grid horizontal instead of vertical ax.xaxis.grid(False) ax.yaxis.grid(True) sns.despine(left=True, bottom=True)
Example #5
Source File: visualizations.py From Brancher with MIT License | 5 votes |
def plot_density(model, variables, number_samples=2000): sample = model.get_sample(number_samples) warnings.filterwarnings('ignore') g = sns.PairGrid(sample[variables]) g = g.map_offdiag(sns.kdeplot) g = g.map_diag(sns.kdeplot, lw=3, shade=True) g = g.add_legend() warnings.filterwarnings('default')
Example #6
Source File: valueWeightStatistic_merge.py From python-urbanPlanning with MIT License | 4 votes |
def geoValVisulization_a(geoPd): geoPd["ID"]=geoPd.index.astype(str) print(geoPd.columns) ''' Index(['park_no', 'label', 'park_class', 'location', 'acres', 'shape_area', 'shape_leng', 'perimeter', 'geometry', 'shapelyArea', 'shapelyLength', 'shapeIdx', 'FRAC', 'popu_count', 'popu_mean', 'popu_std', 'popu_min', 'popu_25%', 'popu_50%', 'popu_75%', 'popu_max', 'SVFW_count', 'SVFW_mean', 'SVFW_std', 'SVFW_min', 'SVFW_25%', 'SVFW_50%', 'SVFW_75%', 'SVFW_max', 'polyID', 'SVFep_min', 'SVFep_max', 'SVFep_mean', 'SVFep_count', 'SVFep_sum', 'SVFep_std', 'SVFep_median', 'SVFep_majority', 'SVFep_minority', 'SVFep_unique', 'SVFep_range', 'SVFep_nodata', 'HVege_min', 'HVege_max', 'HVege_mean', 'HVege_count', 'HVege_sum', 'HVege_std', 'HVege_median', 'HVege_majority', 'HVege_minority', 'HVege_range', 'HVege_nodata', 'MVege_min', 'MVege_max', 'MVege_mean', 'MVege_count', 'MVege_sum', 'MVege_std', 'MVege_median', 'MVege_majority', 'MVege_minority', 'MVege_range', 'MVege_nodata', 'LVege_min', 'LVege_max', 'LVege_mean', 'LVege_count', 'LVege_sum', 'LVege_std', 'LVege_median', 'LVege_majority', 'LVege_minority', 'LVege_range', 'LVege_nodata', 'facilityFre', 'facilityID', 'cla_treeCanopy', 'cla_grassShrub', 'cla_bareSoil', 'cla_buildings', 'cla_roadsRailraods', 'cla_otherPavedSurfaces', 'cla_water', 'classi_count', 'ID'], dtype='object') ''' sns.set(style="whitegrid") # Make the PairGrid extractedColumns=['shapelyArea','shapelyLength', 'shapeIdx','FRAC', 'SVFW_mean','SVFW_std', 'SVFW_mean','SVFW_std', 'popu_std','popu_mean', 'facilityFre', 'classi_count','cla_treeCanopy', 'cla_grassShrub','cla_bareSoil', 'cla_buildings', 'cla_roadsRailraods', 'cla_otherPavedSurfaces','cla_water', 'HVege_count','HVege_mean', 'LVege_count','LVege_mean', ] # geoPdSort=geoPd.sort_values('shapelyArea', ascending=False) g=sns.PairGrid(geoPd.sort_values('shapelyArea', ascending=False),x_vars=extractedColumns, y_vars=["label"],height=20, aspect=.25) # g=sns.PairGrid(geoPd,x_vars=extractedColumns, y_vars=["ID"],height=20, aspect=.25) # Draw a dot plot using the stripplot function g.map(sns.stripplot, size=5, orient="h",palette="ch:s=1,r=-.1,h=1_r", linewidth=1, edgecolor="w") # Use the same x axis limits on all columns and add better labels g.set(xlabel="value", ylabel="") #g.set(xlim=(0, 25), xlabel="Crashes", ylabel="") # Use semantically meaningful titles for the columns g.fig.set_figwidth(30) g.fig.set_figheight(80) titles=extractedColumns for ax, title in zip(g.axes.flat, titles): # Set a different title for each axes ax.set(title=title) # Make the grid horizontal instead of vertical ax.xaxis.grid(False) ax.yaxis.grid(True) sns.despine(left=True, bottom=True) return geoPd
Example #7
Source File: valueWeightStatistic_merge.py From python-urbanPlanning with MIT License | 4 votes |
def geoValVisulization_a(geoPd): geoPd["ID"]=geoPd.index.astype(str) print(geoPd.columns) ''' Index(['park_no', 'label', 'park_class', 'location', 'acres', 'shape_area', 'shape_leng', 'perimeter', 'geometry', 'shapelyArea', 'shapelyLength', 'shapeIdx', 'FRAC', 'popu_count', 'popu_mean', 'popu_std', 'popu_min', 'popu_25%', 'popu_50%', 'popu_75%', 'popu_max', 'SVFW_count', 'SVFW_mean', 'SVFW_std', 'SVFW_min', 'SVFW_25%', 'SVFW_50%', 'SVFW_75%', 'SVFW_max', 'polyID', 'SVFep_min', 'SVFep_max', 'SVFep_mean', 'SVFep_count', 'SVFep_sum', 'SVFep_std', 'SVFep_median', 'SVFep_majority', 'SVFep_minority', 'SVFep_unique', 'SVFep_range', 'SVFep_nodata', 'HVege_min', 'HVege_max', 'HVege_mean', 'HVege_count', 'HVege_sum', 'HVege_std', 'HVege_median', 'HVege_majority', 'HVege_minority', 'HVege_range', 'HVege_nodata', 'MVege_min', 'MVege_max', 'MVege_mean', 'MVege_count', 'MVege_sum', 'MVege_std', 'MVege_median', 'MVege_majority', 'MVege_minority', 'MVege_range', 'MVege_nodata', 'LVege_min', 'LVege_max', 'LVege_mean', 'LVege_count', 'LVege_sum', 'LVege_std', 'LVege_median', 'LVege_majority', 'LVege_minority', 'LVege_range', 'LVege_nodata', 'facilityFre', 'facilityID', 'cla_treeCanopy', 'cla_grassShrub', 'cla_bareSoil', 'cla_buildings', 'cla_roadsRailraods', 'cla_otherPavedSurfaces', 'cla_water', 'classi_count', 'ID'], dtype='object') ''' sns.set(style="whitegrid") # Make the PairGrid extractedColumns=['shapelyArea','shapelyLength', 'shapeIdx','FRAC', 'SVFW_mean','SVFW_std', 'SVFW_mean','SVFW_std', 'popu_std','popu_mean', 'facilityFre', 'classi_count','cla_treeCanopy', 'cla_grassShrub','cla_bareSoil', 'cla_buildings', 'cla_roadsRailraods', 'cla_otherPavedSurfaces','cla_water', 'HVege_count','HVege_mean', 'LVege_count','LVege_mean', ] # geoPdSort=geoPd.sort_values('shapelyArea', ascending=False) g=sns.PairGrid(geoPd.sort_values('shapelyArea', ascending=False),x_vars=extractedColumns, y_vars=["label"],height=20, aspect=.25) # g=sns.PairGrid(geoPd,x_vars=extractedColumns, y_vars=["ID"],height=20, aspect=.25) # Draw a dot plot using the stripplot function g.map(sns.stripplot, size=5, orient="h",palette="ch:s=1,r=-.1,h=1_r", linewidth=1, edgecolor="w") # Use the same x axis limits on all columns and add better labels g.set(xlabel="value", ylabel="") #g.set(xlim=(0, 25), xlabel="Crashes", ylabel="") # Use semantically meaningful titles for the columns g.fig.set_figwidth(30) g.fig.set_figheight(80) titles=extractedColumns for ax, title in zip(g.axes.flat, titles): # Set a different title for each axes ax.set(title=title) # Make the grid horizontal instead of vertical ax.xaxis.grid(False) ax.yaxis.grid(True) sns.despine(left=True, bottom=True) return geoPd