Python seaborn.set_style() Examples
The following are 30
code examples of seaborn.set_style().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
seaborn
, or try the search function
.
Example #1
Source File: training.py From adversarial-policies with MIT License | 6 votes |
def visualize_score(command, styles, tb_dir, score_paths, fig_dir): baseline = [util.load_datasets(path) for path in score_paths] baseline = pd.concat(baseline) sns.set_style("whitegrid") for style in styles: plt.style.use(vis_styles.STYLES[style]) out_paths = command(tb_dir, baseline) for out_path in out_paths: visualize_training_ex.add_artifact(filename=out_path) for observer in visualize_training_ex.observers: if hasattr(observer, "dir"): logger.info(f"Copying from {observer.dir} to {fig_dir}") copy_tree(observer.dir, fig_dir) break
Example #2
Source File: evals.py From acnn with GNU General Public License v3.0 | 6 votes |
def plot_kim_curve(tmp): sns.set_context("notebook", font_scale=1.5, rc={"lines.linewidth": 5}) sns.set_style("darkgrid") plt.figure(figsize=(20, 10)) plt.hold('on') plt.plot(np.linspace(0, 0.3, 100), tmp['kc_avg']) plt.ylim([0, 1]) # plt.figure(figsize=(10,5)) # plt.hold('on') # legend = [] # for k,v in bench_res.iteritems(): # plt.plot(np.linspace(0, 0.3, 100), v['kc_avg']) # legend.append(k) # plt.ylim([0, 1]) # plt.legend(legend, loc='lower right')
Example #3
Source File: plot_return.py From MinAtar with GNU General Public License v3.0 | 6 votes |
def plot_avg_return(file_name, granularity): plotting_data = torch.load(file_name + "_processed_data") returns = plotting_data['returns'] unique_frames = plotting_data['unique_frames'] x_len = len(unique_frames) x_index = [i for i in numpy.arange(0, x_len, granularity)] x = unique_frames[::granularity] y = numpy.transpose(numpy.array(returns)[x_index, :]) f, ax = plt.subplots(1, 1, figsize=[3, 2], dpi=300) sns.set_style("ticks") sns.set_context("paper") # Find the order of magnitude of the last frame order = int(math.log10(unique_frames[-1])) range_frames = int(unique_frames[-1]/ (10**order)) sns.tsplot(data=y, time=numpy.array(x)/(10**order), color='b') ax.set_xticks(numpy.arange(range_frames + 1)) plt.show() f.savefig(file_name + "_avg_return.pdf", bbox_inches="tight") plt.close(f)
Example #4
Source File: word_question.py From guesswhat with Apache License 2.0 | 6 votes |
def __init__(self, path, games, logger, suffix): super(WordVsQuestion, self).__init__(path, self.__class__.__name__, suffix) w_by_q = [] for game in games: for q in game.questions: q = re.sub('[?]', '', q) words = re.findall(r'\w+', q) w_by_q.append(len(words)) sns.set_style("whitegrid", {"axes.grid": False}) # ratio question/words f = sns.distplot(w_by_q, norm_hist=True, kde=False, bins=np.arange(2.5, 15.5, 1), color="g") f.set_xlabel("Number of words", {'size': '14'}) f.set_ylabel("Ratio of questions", {'size': '14'}) f.set_xlim(2.5, 14.5) f.set_ylim(bottom=0)
Example #5
Source File: visualize.py From adversarial-policies with MIT License | 6 votes |
def main(): logging.basicConfig(level=logging.DEBUG) output_dir = "data/density/visualize" os.makedirs(output_dir, exist_ok=True) styles = ["paper", "density_twocol"] sns.set_style("whitegrid") for style in styles: plt.style.use(vis_styles.STYLES[style]) plot_heatmaps(output_dir) plot_comparative_densities(output_dir) bar_chart( ENV_NAMES, victim_id="1", n_components=20, covariance="full", savefile=f"{output_dir}/bar_chart.pdf", )
Example #6
Source File: question_dialogues.py From guesswhat with Apache License 2.0 | 6 votes |
def __init__(self, path, games, logger, suffix): super(QuestionVsDialogue, self).__init__(path, self.__class__.__name__, suffix) q_by_d = [] for game in games: q_by_d.append(len(game.questions)) sns.set_style("whitegrid", {"axes.grid": False}) #ratio question/dialogues f = sns.distplot(q_by_d, norm_hist =True, kde=False, bins=np.arange(0.5, 25.5, 1)) f.set_xlim(0.5,25.5) f.set_ylim(bottom=0) f.set_xlabel("Number of questions", {'size':'14'}) f.set_ylabel("Ratio of dialogues", {'size':'14'})
Example #7
Source File: visualizations.py From fitlins with Apache License 2.0 | 6 votes |
def _run_interface(self, runtime): import matplotlib matplotlib.use('Agg') import seaborn as sns from matplotlib import pyplot as plt sns.set_style('white') plt.rcParams['svg.fonttype'] = 'none' plt.rcParams['image.interpolation'] = 'nearest' data = self._load_data(self.inputs.data) out_name = fname_presuffix(self.inputs.data, suffix='.' + self.inputs.image_type, newpath=runtime.cwd, use_ext=False) self._visualize(data, out_name) self._results['figure'] = out_name return runtime
Example #8
Source File: chart.py From Penny-Dreadful-Tools with GNU General Public License v3.0 | 6 votes |
def image(path: str, costs: Dict[str, int]) -> str: ys = ['0', '1', '2', '3', '4', '5', '6', '7+', 'X'] xs = [costs.get(k, 0) for k in ys] sns.set_style('white') sns.set(font='Concourse C3', font_scale=3) g = sns.barplot(ys, xs, palette=['#cccccc'] * len(ys)) g.axes.yaxis.set_ticklabels([]) rects = g.patches sns.set(font='Concourse C3', font_scale=2) for rect, label in zip(rects, xs): if label == 0: continue height = rect.get_height() g.text(rect.get_x() + rect.get_width()/2, height + 0.5, label, ha='center', va='bottom') g.margins(y=0, x=0) sns.despine(left=True, bottom=True) g.get_figure().savefig(path, transparent=True, pad_inches=0, bbox_inches='tight') plt.clf() # Clear all data from matplotlib so it does not persist across requests. return path
Example #9
Source File: callbacks.py From keras-utilities with MIT License | 6 votes |
def on_train_begin(self, logs={}): sns.set_style("whitegrid") sns.set_style("whitegrid", {"grid.linewidth": 0.5, "lines.linewidth": 0.5, "axes.linewidth": 0.5}) flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"] sns.set_palette(sns.color_palette(flatui)) # flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"] # sns.set_palette(sns.color_palette("Set2", 10)) plt.ion() # set plot to animated width = self.width * (1 + len(self.get_metrics(logs))) height = self.height self.fig = plt.figure(figsize=(width, height)) # move it to the upper left corner move_figure(self.fig, 25, 25)
Example #10
Source File: callbacks.py From keras-utilities with MIT License | 6 votes |
def on_train_begin(self, logs={}): for layer in self.get_trainable_layers(): for param in self.parameters: if any(w for w in layer.weights if param in w.name.split("_")): name = layer.name + "_" + param self.layers_stats[name]["values"] = numpy.asarray( []).ravel() for s in self.stats: self.layers_stats[name][s] = [] # plt.style.use('ggplot') plt.ion() # set plot to animated width = 3 * (1 + len(self.stats)) height = 2 * len(self.layers_stats) self.fig = plt.figure(figsize=(width, height)) # sns.set_style("whitegrid") self.draw_plot()
Example #11
Source File: timit.py From pyroomacoustics with MIT License | 5 votes |
def plot(self): try: import matplotlib.pyplot as plt import seaborn as sns except ImportError: return sns.set_style('white') L = self.samples.shape[0] plt.plot(np.arange(L)/self.fs, self.samples) plt.xlim((0,L/self.fs)) plt.xlabel('Time') plt.title(self.word)
Example #12
Source File: Auto_NLP.py From Auto_ViML with Apache License 2.0 | 5 votes |
def plot_confusion_matrix(y_test,y_pred, model_name='Model'): """ This plots a beautiful confusion matrix based on input: ground truths and predictions """ #Confusion Matrix '''Plotting CONFUSION MATRIX''' import matplotlib.pyplot as plt import seaborn as sns sns.set_style('darkgrid') '''Display''' from IPython.core.display import display, HTML display(HTML("<style>.container { width:95% !important; }</style>")) pd.options.display.float_format = '{:,.2f}'.format #Get the confusion matrix and put it into a df from sklearn.metrics import confusion_matrix, f1_score cm = confusion_matrix(y_test, y_pred) cm_df = pd.DataFrame(cm, index = np.unique(y_test).tolist(), columns = np.unique(y_test).tolist(), ) #Plot the heatmap plt.figure(figsize=(12, 8)) sns.heatmap(cm_df, center=0, cmap=sns.diverging_palette(220, 15, as_cmap=True), annot=True, fmt='g') plt.title(' %s \nF1 Score(avg = micro): %0.2f \nF1 Score(avg = macro): %0.2f' %( model_name,f1_score(y_test, y_pred, average='micro'),f1_score(y_test, y_pred, average='macro')), fontsize = 13) plt.ylabel('True label', fontsize = 13) plt.xlabel('Predicted label', fontsize = 13) plt.show(); ##############################################################################################
Example #13
Source File: attention_allocation_experiment_plotting.py From ml-fairness-gym with Apache License 2.0 | 5 votes |
def plot_discovered_occurred_ratio_range(dataframe, file_path=''): """Plot the range of discovered incidents/occurred range between locations.""" plot_height = 5 aspect_ratio = 1.3 sns.set_style('whitegrid') sns.despine() sns.catplot( x='param_value', y='discovered/occurred range', data=dataframe, hue='agent_type', kind='bar', palette='muted', height=plot_height, aspect=aspect_ratio) plt.xlabel('Dynamic factor', fontsize=LARGE_FONTSIZE) plt.ylabel('Discovered/occurred range', fontsize=LARGE_FONTSIZE) plt.xticks(fontsize=MEDIUM_FONTSIZE) plt.yticks(fontsize=MEDIUM_FONTSIZE) # plt.legend(fontsize=MEDIUM_FONTSIZE, title_fontsize=MEDIUM_FONTSIZE) plt.savefig(file_path + '.pdf', bbox_inches='tight') sns.catplot( x='param_value', y='discovered/occurred range weighted', data=dataframe, hue='agent_type', kind='bar', palette='muted', height=plot_height, aspect=aspect_ratio) plt.xlabel('Dynamic factor', fontsize=LARGE_FONTSIZE) plt.ylabel('Delta', fontsize=LARGE_FONTSIZE) plt.xticks(fontsize=MEDIUM_FONTSIZE) plt.yticks(fontsize=MEDIUM_FONTSIZE) # plt.legend(fontsize=MEDIUM_FONTSIZE, title_fontsize=MEDIUM_FONTSIZE) plt.savefig(file_path + '_weighted.pdf', bbox_inches='tight')
Example #14
Source File: plaidplotter.py From plaidbench with Apache License 2.0 | 5 votes |
def set_style(): sns.set_style("whitegrid", { "font.family": "serif", "font.serif": ["Times", "Palatino", "serif"] })
Example #15
Source File: 04-optimize-simionescu.py From Hands-On-Genetic-Algorithms-with-Python with MIT License | 5 votes |
def main(): # create initial population (generation 0): population = toolbox.populationCreator(n=POPULATION_SIZE) # prepare the statistics object: stats = tools.Statistics(lambda ind: ind.fitness.values) stats.register("min", np.min) stats.register("avg", np.mean) # define the hall-of-fame object: hof = tools.HallOfFame(HALL_OF_FAME_SIZE) # perform the Genetic Algorithm flow with elitism: population, logbook = elitism.eaSimpleWithElitism(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION, ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True) # print info for best solution found: best = hof.items[0] print("-- Best Individual = ", best) print("-- Best Fitness = ", best.fitness.values[0]) # extract statistics: minFitnessValues, meanFitnessValues = logbook.select("min", "avg") # plot statistics: sns.set_style("whitegrid") plt.plot(minFitnessValues, color='red') plt.plot(meanFitnessValues, color='green') plt.xlabel('Generation') plt.ylabel('Min / Average Fitness') plt.title('Min and Average fitness over Generations') plt.show()
Example #16
Source File: 05-optimize-simionescu-second.py From Hands-On-Genetic-Algorithms-with-Python with MIT License | 5 votes |
def main(): # create initial population (generation 0): population = toolbox.populationCreator(n=POPULATION_SIZE) # prepare the statistics object: stats = tools.Statistics(lambda ind: ind.fitness.values) stats.register("min", np.min) stats.register("avg", np.mean) # define the hall-of-fame object: hof = tools.HallOfFame(HALL_OF_FAME_SIZE) # perform the Genetic Algorithm flow with elitism: population, logbook = elitism.eaSimpleWithElitism(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION, ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True) # print info for best solution found: best = hof.items[0] print("-- Best Individual = ", best) print("-- Best Fitness = ", best.fitness.values[0]) # extract statistics: minFitnessValues, meanFitnessValues = logbook.select("min", "avg") # plot statistics: sns.set_style("whitegrid") plt.plot(minFitnessValues, color='red') plt.plot(meanFitnessValues, color='green') plt.xlabel('Generation') plt.ylabel('Min / Average Fitness') plt.title('Min and Average fitness over Generations') plt.show()
Example #17
Source File: 01-optimize-eggholder.py From Hands-On-Genetic-Algorithms-with-Python with MIT License | 5 votes |
def main(): # create initial population (generation 0): population = toolbox.populationCreator(n=POPULATION_SIZE) # prepare the statistics object: stats = tools.Statistics(lambda ind: ind.fitness.values) stats.register("min", np.min) stats.register("avg", np.mean) # define the hall-of-fame object: hof = tools.HallOfFame(HALL_OF_FAME_SIZE) # perform the Genetic Algorithm flow with elitism: population, logbook = elitism.eaSimpleWithElitism(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION, ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True) # print info for best solution found: best = hof.items[0] print("-- Best Individual = ", best) print("-- Best Fitness = ", best.fitness.values[0]) # extract statistics: minFitnessValues, meanFitnessValues = logbook.select("min", "avg") # plot statistics: sns.set_style("whitegrid") plt.plot(minFitnessValues, color='red') plt.plot(meanFitnessValues, color='green') plt.xlabel('Generation') plt.ylabel('Min / Average Fitness') plt.title('Min and Average fitness over Generations') plt.show()
Example #18
Source File: 03-solve-tsp.py From Hands-On-Genetic-Algorithms-with-Python with MIT License | 5 votes |
def main(): # create initial population (generation 0): population = toolbox.populationCreator(n=POPULATION_SIZE) # prepare the statistics object: stats = tools.Statistics(lambda ind: ind.fitness.values) stats.register("min", np.min) stats.register("avg", np.mean) # define the hall-of-fame object: hof = tools.HallOfFame(HALL_OF_FAME_SIZE) # perform the Genetic Algorithm flow with hof feature added: population, logbook = elitism.eaSimpleWithElitism(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION, ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True) # print best individual info: best = hof.items[0] print("-- Best Ever Individual = ", best) print("-- Best Ever Fitness = ", best.fitness.values[0]) # plot best solution: plt.figure(1) tsp.plotData(best) # plot statistics: minFitnessValues, meanFitnessValues = logbook.select("min", "avg") plt.figure(2) sns.set_style("whitegrid") plt.plot(minFitnessValues, color='red') plt.plot(meanFitnessValues, color='green') plt.xlabel('Generation') plt.ylabel('Min / Average Fitness') plt.title('Min and Average fitness over Generations') # show both plots: plt.show()
Example #19
Source File: 02-solve-tsp-first-attempt.py From Hands-On-Genetic-Algorithms-with-Python with MIT License | 5 votes |
def main(): # create initial population (generation 0): population = toolbox.populationCreator(n=POPULATION_SIZE) # prepare the statistics object: stats = tools.Statistics(lambda ind: ind.fitness.values) stats.register("min", np.min) stats.register("avg", np.mean) # define the hall-of-fame object: hof = tools.HallOfFame(HALL_OF_FAME_SIZE) # perform the Genetic Algorithm flow with hof feature added: population, logbook = algorithms.eaSimple(population, toolbox, cxpb=P_CROSSOVER, mutpb=P_MUTATION, ngen=MAX_GENERATIONS, stats=stats, halloffame=hof, verbose=True) # print best individual info: best = hof.items[0] print("-- Best Ever Individual = ", best) print("-- Best Ever Fitness = ", best.fitness.values[0]) # plot best solution: plt.figure(1) tsp.plotData(best) # plot statistics: minFitnessValues, meanFitnessValues = logbook.select("min", "avg") plt.figure(2) sns.set_style("whitegrid") plt.plot(minFitnessValues, color='red') plt.plot(meanFitnessValues, color='green') plt.xlabel('Generation') plt.ylabel('Min / Average Fitness') plt.title('Min and Average fitness over Generations') # show both plots: plt.show()
Example #20
Source File: b_sbn_arm.py From ARM-gradient with MIT License | 5 votes |
def fig_gnrt(figs,epoch,show=False,bny=True,name_fig=None): ''' input:N*28*28 ''' sns.set_style("whitegrid", {'axes.grid' : False}) plt.ioff() if bny: b = figs > 0.5 figs = b.astype('float') nx = ny = 10 canvas = np.empty((28*ny, 28*nx)) for i in range(nx): for j in range(ny): canvas[(nx-i-1)*28:(nx-i)*28, j*28:(j+1)*28] = figs[i*nx+j] plt.figure(figsize=(8, 10)) plt.imshow(canvas, origin="upper", cmap="gray") plt.tight_layout() if name_fig == None: path = os.getcwd()+'/out/' if not os.path.exists(path): os.makedirs(path) name_fig = path + str(epoch)+'.png' plt.savefig(name_fig, bbox_inches='tight') plt.close('all') if show: plt.show() #%%
Example #21
Source File: sucess_dialogue_length.py From guesswhat with Apache License 2.0 | 5 votes |
def __init__(self, path, games, logger, suffix): super(SuccessDialogueLength, self).__init__(path, self.__class__.__name__, suffix) status_list = [] status_count = collections.defaultdict(int) length_list = [] for game in games: length_list.append(len(game.questions)) status_count[game.status] += 1 status_list.append(game.status) success = np.array([s == "success" for s in status_list]) + 0 failure = np.array([s == "failure" for s in status_list]) + 0 incomp = np.array([s == "incomplete" for s in status_list]) + 0 sns.set_style("whitegrid", {"axes.grid": False}) if sum(incomp) > 0: columns = ['Size of Dialogues', 'Success', 'Failure', 'Incomplete'] data = np.array([length_list, success, failure, incomp]).transpose() else: columns = ['Size of Dialogues', 'Success', 'Failure'] data = np.array([length_list, success, failure]).transpose() df = pd.DataFrame(data, columns=columns) df = df.convert_objects(convert_numeric=True) df = df.groupby('Size of Dialogues').sum() df = df.div(df.sum(axis=1), axis=0) #df = df.sort_values(by='Success') f = df.plot(kind="bar", stacked=True, width=1, alpha=0.3) f.set_xlim(-0.5,29.5) plt.xlabel("Size of Dialogues", {'size':'14'}) plt.ylabel("Success ratio", {'size':'14'})
Example #22
Source File: plot.py From pytorch-asr with GNU General Public License v3.0 | 5 votes |
def plot_llk(train_elbo, test_elbo): import matplotlib.pyplot as plt import scipy as sp import seaborn as sns import pandas as pd plt.figure(figsize=(30, 10)) sns.set_style("whitegrid") data = np.concatenate([np.arange(len(test_elbo))[:, sp.newaxis], -test_elbo[:, sp.newaxis]], axis=1) df = pd.DataFrame(data=data, columns=['Training Epoch', 'Test ELBO']) g = sns.FacetGrid(df, size=10, aspect=1.5) g.map(plt.scatter, "Training Epoch", "Test ELBO") g.map(plt.plot, "Training Epoch", "Test ELBO") plt.savefig(str(Path(result_dir, 'test_elbo_vae.png'))) plt.close('all')
Example #23
Source File: graph.py From pipedream with MIT License | 5 votes |
def plot_cdfs(self, cdfs, output_directory): import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import seaborn as sns matplotlib.rc('text', usetex=True) sns.set_style('ticks') sns.set_style({'font.family':'sans-serif'}) flatui = ['#002A5E', '#FD151B', '#8EBA42', '#348ABD', '#988ED5', '#777777', '#8EBA42', '#FFB5B8'] sns.set_palette(flatui) paper_rc = {'lines.linewidth': 2, 'lines.markersize': 10} sns.set_context("paper", font_scale=3, rc=paper_rc) current_palette = sns.color_palette() plt.figure(figsize=(10, 4)) ax = plt.subplot2grid((1, 1), (0, 0), colspan=1) labels = ["Compute", "Activations", "Parameters"] for i in range(3): cdf = [cdfs[j][i] for j in range(len(cdfs))] ax.plot(range(len(cdfs)), cdf, label=labels[i], linewidth=2) ax.set_xlim([0, None]) ax.set_ylim([0, 100]) ax.set_xlabel("Layer ID") ax.set_ylabel("CDF (\%)") plt.legend() with PdfPages(os.path.join(output_directory, "cdf.pdf")) as pdf: pdf.savefig(bbox_inches='tight')
Example #24
Source File: plot.py From pipedream with MIT License | 5 votes |
def plot(values, epochs_to_plot, ylimit, ylabel, output_filepath): import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import seaborn as sns matplotlib.rc('text', usetex=True) sns.set_style('ticks') sns.set_style({'font.family':'sans-serif'}) flatui = ['#002A5E', '#FD151B', '#8EBA42', '#348ABD', '#988ED5', '#777777', '#8EBA42', '#FFB5B8'] sns.set_palette(flatui) paper_rc = {'lines.linewidth': 2, 'lines.markersize': 10} sns.set_context("paper", font_scale=3, rc=paper_rc) current_palette = sns.color_palette() plt.figure(figsize=(10, 4)) ax = plt.subplot2grid((1, 1), (0, 0), colspan=1) for epoch_to_plot in epochs_to_plot: values_to_plot = values[epoch_to_plot] ax.plot(range(len(values_to_plot)), values_to_plot, label="Epoch %d" % epoch_to_plot, linewidth=2) ax.set_xlim([0, None]) ax.set_ylim([0, ylimit]) ax.set_xlabel("Layer ID") ax.set_ylabel(ylabel) plt.legend() with PdfPages(output_filepath) as pdf: pdf.savefig(bbox_inches='tight')
Example #25
Source File: timit.py From pyroomacoustics with MIT License | 5 votes |
def plot(self, L=512, hop=128, zpb=0, phonems=False, **kwargs): try: import matplotlib.pyplot as plt import seaborn as sns except ImportError: return sns.set_style('white') X = stft(self.data, L=L, hop=hop, zp_back=zpb, transform=np.fft.rfft, win=np.hanning(L+zpb)) X = 10*np.log10(np.abs(X)**2).T plt.imshow(X, origin='lower', aspect='auto') ticks = [] ticklabels = [] if phonems: for phonem in self.phonems: plt.axvline(x=phonem['bnd'][0]/hop) plt.axvline(x=phonem['bnd'][1]/hop) ticks.append((phonem['bnd'][1]+phonem['bnd'][0])/2/hop) ticklabels.append(phonem['name']) else: for word in self.words: plt.axvline(x=word.boundaries[0]/hop) plt.axvline(x=word.boundaries[1]/hop) ticks.append((word.boundaries[1]+word.boundaries[0])/2/hop) ticklabels.append(word.word) plt.xticks(ticks, ticklabels, rotation=-45) plt.yticks([],[]) plt.tick_params(axis='both', which='major', labelsize=14)
Example #26
Source File: attention_allocation_experiment_plotting.py From ml-fairness-gym with Apache License 2.0 | 5 votes |
def plot_total_miss_discovered(dataframe, file_path=''): """Plot bar charts comparing agents total missed and discovered incidents.""" plot_height = 5 aspect_ratio = 1.3 sns.set_style('whitegrid') sns.despine() sns.catplot( x='param_value', y='total_missed', data=dataframe, hue='agent_type', kind='bar', palette='muted', height=plot_height, aspect=aspect_ratio, legend=False) plt.xlabel('Dynamic factor', fontsize=LARGE_FONTSIZE) plt.ylabel('Total missed incidents', fontsize=LARGE_FONTSIZE) plt.xticks(fontsize=MEDIUM_FONTSIZE) plt.yticks(fontsize=MEDIUM_FONTSIZE) plt.legend(fontsize=MEDIUM_FONTSIZE, title_fontsize=MEDIUM_FONTSIZE) plt.savefig(file_path + '_missed.pdf', bbox_inches='tight') sns.catplot( x='param_value', y='total_discovered', data=dataframe, hue='agent_type', kind='bar', palette='muted', height=plot_height, aspect=aspect_ratio, legend=False) plt.xlabel('Dynamic factor', fontsize=LARGE_FONTSIZE) plt.ylabel('Total discovered incidents', fontsize=LARGE_FONTSIZE) plt.xticks(fontsize=MEDIUM_FONTSIZE) plt.yticks(fontsize=MEDIUM_FONTSIZE) plt.legend(fontsize=MEDIUM_FONTSIZE, title_fontsize=MEDIUM_FONTSIZE) plt.savefig(file_path + '_discovered.pdf', bbox_inches='tight')
Example #27
Source File: Auto_NLP.py From Auto_ViML with Apache License 2.0 | 5 votes |
def plot_confusion_matrix(y_test,y_pred, model_name='Model'): """ This plots a beautiful confusion matrix based on input: ground truths and predictions """ #Confusion Matrix '''Plotting CONFUSION MATRIX''' import matplotlib.pyplot as plt import seaborn as sns sns.set_style('darkgrid') '''Display''' from IPython.core.display import display, HTML display(HTML("<style>.container { width:95% !important; }</style>")) pd.options.display.float_format = '{:,.2f}'.format #Get the confusion matrix and put it into a df from sklearn.metrics import confusion_matrix, f1_score cm = confusion_matrix(y_test, y_pred) cm_df = pd.DataFrame(cm, index = np.unique(y_test).tolist(), columns = np.unique(y_test).tolist(), ) #Plot the heatmap plt.figure(figsize=(12, 8)) sns.heatmap(cm_df, center=0, cmap=sns.diverging_palette(220, 15, as_cmap=True), annot=True, fmt='g') plt.title(' %s \nF1 Score(avg = micro): %0.2f \nF1 Score(avg = macro): %0.2f' %( model_name,f1_score(y_test, y_pred, average='micro'),f1_score(y_test, y_pred, average='macro')), fontsize = 13) plt.ylabel('True label', fontsize = 13) plt.xlabel('Predicted label', fontsize = 13) plt.show(); ##############################################################################################
Example #28
Source File: app.py From smallrnaseq with GNU General Public License v3.0 | 5 votes |
def plot_results(res, path): """Some results plots""" if res is None or len(res) == 0: return counts = base.pivot_count_data(res, idxcols=['name','ref']) x = base.get_fractions_mapped(res) print (x) import seaborn as sns sns.set_style('white') sns.set_context("paper",font_scale=1.2) fig = plotting.plot_fractions(x) fig.savefig(os.path.join(path,'libraries_mapped.png')) fig = plotting.plot_sample_counts(counts) fig.savefig(os.path.join(path,'total_per_sample.png')) fig = plotting.plot_read_count_dists(counts) fig.savefig(os.path.join(path,'top_mapped.png')) scols,ncols = base.get_column_names(counts) for l,df in counts.groupby('ref'): if 'mirbase' in l: fig = plotting.plot_read_count_dists(df) fig.savefig(os.path.join(path,'top_%s.png' %l)) #if len(scols)>1: # fig = plotting.expression_clustermap(counts) # fig.savefig(os.path.join(path,'expr_map.png')) return
Example #29
Source File: model.py From neural-cryptography-tensorflow with MIT License | 5 votes |
def plot_errors(self): """ Plot Lowest Decryption Errors achieved by Bob and Eve per epoch """ sns.set_style("darkgrid") plt.plot(self.bob_errors) plt.plot(self.eve_errors) plt.legend(['bob', 'eve']) plt.xlabel('Epoch') plt.ylabel('Lowest Decryption error achieved') plt.show()
Example #30
Source File: plot_results.py From py-lapsolver with MIT License | 5 votes |
def draw_plots(df): sns.set_style("whitegrid") for s, g in df.groupby('scalar'): print(g) plt.figure(figsize=(8, 5.5)) title='Benchmark results for dtype={}'.format(s) ax = sns.barplot(x='mean-time', y='matrix-size', hue='solver', data=g, errwidth=0, palette="muted") ax.set_xscale("log") ax.set_xlabel('mean-time (sec)') plt.legend(loc='upper right') plt.title(title) plt.tight_layout() plt.savefig('benchmark-dtype-{}.png'.format(s), transparent=True, ) plt.show()