Python seaborn.pairplot() Examples
The following are 20
code examples of seaborn.pairplot().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
seaborn
, or try the search function
.
Example #1
Source File: stock_visualizer.py From stock-analysis with MIT License | 6 votes |
def jointplot(self, other, column, **kwargs): """ Generate a seaborn jointplot for given column in asset compared to another asset. Parameters: - other: The other asset's dataframe - column: The column name to use for the comparison. - kwargs: Keyword arguments to pass down to `sns.pairplot()` Returns: A seaborn jointplot """ return sns.jointplot( x=self.data[column], y=other[column], **kwargs )
Example #2
Source File: stock_visualizer.py From stock-analysis with MIT License | 6 votes |
def pairplot(self, **kwargs): """ Generate a seaborn pairplot for this asset group. Parameters: - kwargs: Keyword arguments to pass down to `sns.pairplot()` Returns: A seaborn pairplot """ return sns.pairplot( self.data.pivot_table( values='close', index=self.data.index, columns='name' ), diag_kind='kde', **kwargs )
Example #3
Source File: clustering_kmeans_search_alternative.py From practicalDataAnalysisCookbook with GNU General Public License v2.0 | 6 votes |
def plotInteractions(data, n_clusters): ''' Plot the interactions between variables ''' # cluster the data cluster = findClusters_kmeans(data, n_clusters) # append the labels to the dataset for ease of plotting data['clus'] = cluster.labels_ # prepare the plot ax = sns.pairplot(selected, hue='clus') # and save the figure ax.savefig( '../../Data/Chapter04/k_means_{0}_clusters.png' \ .format(n_clusters) ) # the file name of the dataset
Example #4
Source File: document.py From DQLearning-Toolbox with MIT License | 5 votes |
def savePair(df,samplesize=20000): df1 = df.sample(samplesize) sns.set(style="ticks") sns.set_context("paper") sns.pairplot(df1) plt.title('Pair Graph') plt.savefig(pair_path) #画滑动平均图,默认12阶
Example #5
Source File: EDA.py From exploripy with MIT License | 5 votes |
def ScatterPlot(self): start = time.time() sns.set(style="ticks", color_codes=True) this_dir, this_filename = os.path.split(__file__) OutFileName = os.path.join(this_dir, 'HTMLTemplate/dist/output/Scatter.png') fig, ax = plt.subplots() ax = sns.pairplot(self.df[self.ContinuousFeatures].dropna(),markers="+",palette="husl",kind="reg", plot_kws={'line_kws':{'color':'orange'}}) plt.savefig(OutFileName) end = time.time() if self.debug == 'YES': print('ScatterPlot',end-start) return OutFileName
Example #6
Source File: poiRegression.py From python-urbanPlanning with MIT License | 5 votes |
def basicStat(dataBunch): sns.set(style='whitegrid',context='notebook') cols=['lat','lng','price','overall_rating','service_rating','facility_rating','hygiene_rating','image_num','comment_num','favorite_num','checkin_num'] #用于标识frame数据框的列索引 frame=pd.DataFrame(dataBunch.data[:],columns=cols) #转换为pandas库的frame数据框格式,方便数据观察和提取 # print(frame) sns.pairplot(frame[cols],size=2.5) #两两数据的散点图,用于观察数据间的关系 plt.show() cm=np.corrcoef(frame[cols].values.T) #计算两两间的相关系数 sns.set(font_scale=1.3) hm=sns.heatmap(cm,cbar=True,annot=True,square=True,fmt='.2f',annot_kws={'size':13},yticklabels=cols,xticklabels=cols) #热力图显示相关系数,方便直观查看 plt.show
Example #7
Source File: reduce_iris_sample_size_lvq.py From neupy with MIT License | 5 votes |
def plot_scattermatrix(data, target): df = pd.DataFrame(data) df['target'] = target return sns.pairplot(df, hue='target', diag_kind='hist')
Example #8
Source File: scrap_log.py From ffjord with MIT License | 5 votes |
def plot_pairplot(csv_filename, fig_filename, top=None): import seaborn as sns import pandas as pd sns.set(style="ticks", color_codes=True) quants = pd.read_csv(csv_filename) if top is not None: quants = quants[:top] g = sns.pairplot(quants, kind='reg', diag_kind='kde', markers='.') g.savefig(fig_filename)
Example #9
Source File: visualization.py From default-credit-card-prediction with MIT License | 5 votes |
def visualize_hist_pairplot(X,y,selected_feature1,selected_feature2,features,diag_kind): """ Visualize the pairwise relationships (Histograms and Density Funcions) between classes and respective attributes Keyword arguments: X -- The feature vectors y -- The target vector selected_feature1 - First feature selected_feature1 - Second feature diag_kind -- Type of plot in the diagonal (Histogram or Density Function) """ #create data joint_data=np.column_stack((X,y)) column_names=features #create dataframe df=pd.DataFrame(data=joint_data,columns=column_names) #plot palette = sea.hls_palette() splot=sea.pairplot(df, hue="Y", palette={0:palette[2],1:palette[0]},vars=[selected_feature1,selected_feature2],diag_kind=diag_kind) splot.fig.suptitle('Pairwise relationship: '+selected_feature1+" vs "+selected_feature2) splot.set(xticklabels=[]) # plt.subplots_adjust(right=0.94, top=0.94) #save fig output_dir = "img" save_fig(output_dir,'{}/{}_{}_hist_pairplot.png'.format(output_dir,selected_feature1,selected_feature2)) # plt.show()
Example #10
Source File: plotfunctions.py From DataScience-webapp-with-flask with MIT License | 5 votes |
def plot_correlations(ds, corr, corrcat): sns.set() plt.gcf().clear() if corrcat != '': sns.pairplot(ds[corr], hue = corrcat) else: sns.pairplot(ds[corr]) from io import BytesIO figfile = BytesIO() plt.savefig(figfile, format='png') figfile.seek(0) # rewind to beginning of file import base64 figdata_png = base64.b64encode(figfile.getvalue()) return figdata_png
Example #11
Source File: vis_corex.py From bio_corex with Apache License 2.0 | 5 votes |
def plot_pairplots(data, labels, alpha, mis, column_label, topk=5, prefix='', focus=''): cmap = sns.cubehelix_palette(as_cmap=True, light=.9) plt.rcParams.update({'font.size': 32}) m, nv = mis.shape for j in range(m): inds = np.where(np.logical_and(alpha[j] > 0, mis[j] > 0.))[0] inds = inds[np.argsort(- alpha[j, inds] * mis[j, inds])][:topk] if focus in column_label: ifocus = column_label.index(focus) if not ifocus in inds: inds = np.insert(inds, 0, ifocus) if len(inds) >= 2: plt.clf() subdata = data[:, inds] columns = [column_label[i] for i in inds] subdata = pd.DataFrame(data=subdata, columns=columns) try: sns.pairplot(subdata, kind="reg", diag_kind="kde", height=5, dropna=True) filename = '{}/pairplots_regress/group_num={}.pdf'.format(prefix, j) if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) plt.suptitle("Latent factor {}".format(j), y=1.01) plt.savefig(filename, bbox_inches='tight') plt.clf() except: pass subdata['Latent factor'] = labels[:,j] try: sns.pairplot(subdata, kind="scatter", dropna=True, vars=subdata.columns.drop('Latent factor'), hue="Latent factor", diag_kind="kde", height=5) filename = '{}/pairplots/group_num={}.pdf'.format(prefix, j) if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) plt.suptitle("Latent factor {}".format(j), y=1.01) plt.savefig(filename, bbox_inches='tight') plt.close('all') except: pass
Example #12
Source File: plotting.py From kvae with MIT License | 5 votes |
def plot_auxiliary(all_vars, filename, table_size=4): # All variables need to be (batch_size, sequence_length, dimension) for i, a in enumerate(all_vars): if a.ndim == 2: all_vars[i] = np.expand_dims(a, 0) dim = all_vars[0].shape[-1] if dim == 2: f, ax = plt.subplots(table_size, table_size, sharex='col', sharey='row', figsize=[12, 12]) idx = 0 for x in range(table_size): for y in range(table_size): for a in all_vars: # Loop over the batch dimension ax[x, y].plot(a[idx, :, 0], a[idx, :, 1], linestyle='-', marker='o', markersize=3) # Plot starting point of the trajectory ax[x, y].plot(a[idx, 0, 0], a[idx, 0, 1], 'r.', ms=12) idx += 1 # plt.show() plt.savefig(filename, format='png', bbox_inches='tight', dpi=80) plt.close() else: df_list = [] for i, a in enumerate(all_vars): df = pd.DataFrame(all_vars[i].reshape(-1, dim)) df['class'] = i df_list.append(df) df_all = pd.concat(df_list) sns_plot = sns.pairplot(df_all, hue="class", vars=range(dim)) sns_plot.savefig(filename) plt.close()
Example #13
Source File: atlas3.py From ssbio with MIT License | 5 votes |
def make_pairplot(self, num_components_to_plot=4, outpath=None, dpi=150): # Get columns components_to_plot = [self.principal_observations_df.columns[x] for x in range(num_components_to_plot)] # Plot plot = sns.pairplot(data=self.principal_observations_df, hue=self.observation_colname, vars=components_to_plot, markers=self.markers, size=4) plt.subplots_adjust(top=.95) plt.suptitle(self.plot_title) if outpath: plot.fig.savefig(outpath, dpi=dpi) else: plt.show() plt.close()
Example #14
Source File: stock_visualizer.py From stock-analysis with MIT License | 5 votes |
def pairplot(self, **kwargs): """ Generate a seaborn pairplot for this asset. Parameters: - kwargs: Keyword arguments to pass down to `sns.pairplot()` Returns: A seaborn pairplot """ return sns.pairplot(self.data, **kwargs)
Example #15
Source File: stock_visualizer.py From stock-analysis with MIT License | 5 votes |
def pairplot(self, **kwargs): """To be implemented by subclasses for generating pairplots.""" raise NotImplementedError('To be implemented by subclasses!')
Example #16
Source File: plots.py From AlphaPy with Apache License 2.0 | 4 votes |
def plot_scatter(df, features, target, tag='eda', directory=None): r"""Plot a scatterplot matrix, also known as a pair plot. Parameters ---------- df : pandas.DataFrame The dataframe containing the features. features: list of str The features to compare in the scatterplot. target : str The target variable for contrast. tag : str Unique identifier for the plot. directory : str, optional The full specification of the plot location. Returns ------- None : None. References ---------- https://seaborn.pydata.org/examples/scatterplot_matrix.html """ logger.info("Generating Scatter Plot") # Get the feature subset features.append(target) df = df[features] # Generate the pair plot sns.set() sns_plot = sns.pairplot(df, hue=target) # Save the plot write_plot('seaborn', sns_plot, 'scatter_plot', tag, directory) # # Function plot_facet_grid #
Example #17
Source File: visualize.py From pipelines with Apache License 2.0 | 4 votes |
def datahtml( bucket_name, commit_sha, train_file_path ): import json import seaborn as sns import matplotlib.pyplot as plt import os image_path = os.path.join(bucket_name, commit_sha, 'visualization.png') image_url = os.path.join('https://storage.googleapis.com', bucket_name.lstrip('gs://'), commit_sha, 'visualization.png') html_path = os.path.join(bucket_name, 'kaggle.html') # ouptut visualization to a file import pandas as pd df_train = pd.read_csv(train_file_path) sns.set() cols = ['SalePrice', 'OverallQual', 'GrLivArea', 'GarageCars', 'TotalBsmtSF', 'FullBath', 'YearBuilt'] sns.pairplot(df_train[cols], size = 3) plt.savefig('visualization.png') from tensorflow.python.lib.io import file_io file_io.copy('visualization.png', image_path) rendered_template = """ <html> <head> <title>correlation image</title> </head> <body> <img src={}> </body> </html>""".format(image_url) file_io.write_string_to_file(html_path, rendered_template) metadata = { 'outputs' : [{ 'type': 'web-app', 'storage': 'gcs', 'source': html_path, }] } with file_io.FileIO('/mlpipeline-ui-metadata.json', 'w') as f: json.dump(metadata, f)
Example #18
Source File: plotUtils.py From pyodds with MIT License | 4 votes |
def visualize_outlierscore(value,label,contamination,path=None): """ Visualize the predicted outlier score. Parameters ---------- value: numpy array of shape (n_test, ) The outlier score of the test data. label: numpy array of shape (n_test, ) The label of test data produced by the algorithm. contamination : float in (0., 0.5), optional (default=0.1) The amount of contamination of the data set, i.e. the proportion of outliers in the data set. Used when fitting to define the threshold on the decision function. path: string The saving path for result figures. """ sns.set(style="darkgrid") ts = np.arange(len(value)) outlier_label=[] for i in range(len(ts)): if label[i]==1: outlier_label.append('inlier') else: outlier_label.append('outlier') X_outlier = pd.DataFrame({'ts':ts,'Outlier_score':value,'outlier_label':np.array(outlier_label)}) pal = dict(inlier="#4CB391", outlier="gray") g = sns.FacetGrid(X_outlier, hue="outlier_label", palette=pal, height=5) g.map(plt.scatter, "ts", "Outlier_score", s=30, alpha=.7, linewidth=.5, edgecolor="white") ranking = np.sort(value) threshold = ranking[int((1 - contamination) * len(ranking))] plt.hlines(threshold, xmin=0, xmax=len(X_outlier)-1, colors="g", zorder=100, label='Threshold') threshold = ranking[int((contamination) * len(ranking))] plt.hlines(threshold, xmin=0, xmax=len(X_outlier)-1, colors="g", zorder=100, label='Threshold2') if path: plt.savefig(path+'/visualize_outlierscore.png') plt.show() # def visualize_outlierresult(X,label,path=None): # """ # Visualize the predicted outlier result. # # Parameters # ---------- # X: numpy array of shape (n_test, n_features) # The test data. # label: numpy array of shape (n_test, ) # The label of test data produced by the algorithm. # # """ # X['outlier']=pd.Series(label) # pal = dict(inlier="#4CB391", outlier="gray") # g = sns.pairplot(X, hue="outlier", palette=pal) # if path: # plt.savefig(path+'/visualize_outlierresult.png') # plt.show()
Example #19
Source File: sampling.py From pyPESTO with BSD 3-Clause "New" or "Revised" License | 4 votes |
def sampling_scatter( result: Result, i_chain: int = 0, stepsize: int = 1, suptitle: str = None, size: Tuple[float, float] = None): """Parameter scatter plot. Parameters ---------- result: The pyPESTO result object with filled sample result. i_chain: Which chain to plot. Default: First chain. stepsize: Only one in `stepsize` values is plotted. suptitle: Figure super title. size: Figure size in inches. Returns ------- ax: The plot axes. """ # get data which should be plotted nr_params, params_fval, theta_lb, theta_ub = get_data_to_plot( result=result, i_chain=i_chain, stepsize=stepsize) sns.set(style="ticks") ax = sns.pairplot( params_fval.drop(['logPosterior', 'iteration'], axis=1)) if size is not None: ax.fig.set_size_inches(size) if suptitle: ax.fig.suptitle(suptitle) return ax
Example #20
Source File: action.py From insightconnect-plugins with MIT License | 4 votes |
def run(self, params={}): # Set styles sns.set_palette(params.get('color_palette')) sns.set(style=params.get('margin_style')) # Process the data and create the plot try: decoded_data = base64.b64decode(params.get('csv_data')) except Exception as e: error = f"Failed to decode base64 encoded CSV data with error: {e}" self.logger.error(error) raise e df = pd.read_csv(BytesIO(decoded_data)) kind = params.get('kind') hue = params.get('hue') args = { "kind": kind } if hue and (len(hue) > 0): args['hue'] = hue if hue not in df: error = f"Column for hue ({hue}) not in data set, cannot create plot..." self.logger.error(error) return Exception(error) # Pairgrids have the savefig method, call it directly self.logger.info("Creating plot...") plot = sns.pairplot(df, **args) # bbox_inches is required to ensure that labels are cut off plot.savefig('plot.png', bbox_inches="tight") with open('plot.png', 'rb') as f: plot = base64.b64encode(f.read()) return { "csv": params.get('csv_data'), "plot": plot.decode('utf-8') }