Python seaborn.lmplot() Examples
The following are 10
code examples of seaborn.lmplot().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
seaborn
, or try the search function
.
Example #1
Source File: noisy_observations.py From adversarial-policies with MIT License | 6 votes |
def noisy_adversary_opponent_subset_plot( original_df, subset_specs, transform_specs, logistic=True, plot_line=True, savefile=None ): subset_df = subset(original_df, subset_specs) if len(subset_df) == 0: return transformed_df = transform(subset_df, transform_specs) plt.figure(figsize=(10, 7)) if plot_line: sns.lmplot(data=transformed_df, x="log_noise", y="agent0_win_perc", logistic=logistic) else: sns.scatterplot(data=transformed_df, x="log_noise", y="agent0_win_perc") plt.title( "{}: Noisy Zoo{} Observations vs Adversary".format( subset_specs["env"], subset_specs["agent0_path"] ) ) if savefile is not None: plt.savefig(savefile) else: plt.show() plt.close()
Example #2
Source File: noisy_observations.py From adversarial-policies with MIT License | 6 votes |
def noisy_multiple_opponent_subset_plot( original_df, subset_specs, transform_specs, logistic=True, savefile=None ): subset_df = subset(original_df, subset_specs) if len(subset_df) == 0: return transformed_df = transform(subset_df, transform_specs) plt.figure(figsize=(10, 7)) sns.lmplot( data=transformed_df, x="log_noise", y="agent0_win_perc", hue="agent1_path", logistic=logistic, ) plt.title( "{}: Noisy Zoo{} Observations vs Normal Zoos".format( subset_specs["env"], subset_specs["agent0_path"] ) ) if savefile is not None: plt.savefig(savefile) else: plt.show() plt.close()
Example #3
Source File: atlas3.py From ssbio with MIT License | 6 votes |
def make_biplot(self, pc_x=1, pc_y=2, outpath=None, dpi=150, custom_markers=None, custom_order=None): if not custom_order: custom_order = sorted(self.observations_df[self.observation_colname].unique().tolist()) if not custom_markers: custom_markers = self.markers plot = sns.lmplot(data=self.principal_observations_df, x=self.principal_observations_df.columns[pc_x - 1], y=self.principal_observations_df.columns[pc_y - 1], hue=self.observation_colname, hue_order=custom_order, fit_reg=False, size=6, markers=custom_markers, scatter_kws={'alpha': 0.5}) plot = (plot.set(title='PC{} vs. PC{}'.format(pc_x, pc_y))) if outpath: plot.savefig(outpath, dpi=dpi) else: plt.show() plt.close()
Example #4
Source File: plotting.py From nltools with MIT License | 6 votes |
def scatterplot(stats_output): """ Plot Prediction Scatterplot Args: stats_output: a pandas file with prediction output Returns: fig: Will return a seaborn scatterplot """ if "yfit_xval" in stats_output.columns: sns.lmplot("Y", "yfit_xval", data=stats_output) else: sns.lmplot("Y", "yfit_all", data=stats_output) plt.xlabel("Y", fontsize=16) plt.ylabel("Predicted Value", fontsize=16) plt.title("Prediction", fontsize=18) return
Example #5
Source File: PCA.py From pySPM with Apache License 2.0 | 6 votes |
def pca_scatter(self, classifs=None, light=False): import seaborn as sns foo = self.get_pca_transf() if classifs is None: if light: plt.scatter(foo[:, 0], foo[:, 1]) else: bar = pd.DataFrame( list(zip(foo[:, 0], foo[:, 1])), columns=["PC1", "PC2"]) sns.lmplot("PC1", "PC2", bar, fit_reg=False) else: if light: plt.scatter(foo[:, 0], foo[:, 1], color=cm.Scalar) else: bar = pd.DataFrame(list(zip(foo[:, 0], foo[:, 1], classifs)), columns=[ "PC1", "PC2", "Class"]) sns.lmplot("PC1", "PC2", bar, hue="Class", fit_reg=False)
Example #6
Source File: tech-report-2016.py From pylangacq with MIT License | 6 votes |
def visualize_can_eng_MLUw(child_name, can_reader, eng_reader, legend=True): x_label = '{}\'s age in months'.format(child_name) can_filenames = can_reader.filenames(sorted_by_age=True) can_ages = can_reader.age(months=True) can_MLUs = can_reader.MLUw() eng_filenames = eng_reader.filenames(sorted_by_age=True) eng_ages = eng_reader.age(months=True) eng_MLUs = eng_reader.MLUw() df = pd.DataFrame({x_label: [can_ages[fn] for fn in can_filenames] + [eng_ages[fn] for fn in eng_filenames], 'MLUw': [can_MLUs[fn] for fn in can_filenames] + [eng_MLUs[fn] for fn in eng_filenames], 'Language': ['Cantonese']*len(can_reader) + ['English']*len(eng_reader)}) MLU_plot = sns.lmplot(x=x_label, y='MLUw', hue='Language', data=df, markers=['o', 'x'], legend=legend, legend_out=False) MLU_plot.set(xlim=(10, 45), ylim=(0, 4.5)) MLU_plot.savefig('{}-MLU.pdf'.format(child_name)) # In[11]:
Example #7
Source File: run.py From themarketingtechnologist with Apache License 2.0 | 5 votes |
def visualize_data(self): """ Transform the DataFrame to the 2-dimensional case and visualizes the data. The first tags are used as labels. :return: """ logging.debug("Preparing visualization of DataFrame") # Reduce dimensionality to 2 features for visualization purposes X_visualization = self.reduce_dimensionality(self.X, n_features=2) df = self.prepare_dataframe(X_visualization) # Set X and Y coordinate for each articles df['X coordinate'] = df['coordinates'].apply(lambda x: x[0]) df['Y coordinate'] = df['coordinates'].apply(lambda x: x[1]) # Create a list of markers, each tag has its own marker n_tags_first = len(self.df['tags_first'].unique()) markers_choice_list = ['o', 's', '^', '.', 'v', '<', '>', 'D'] markers_list = [markers_choice_list[i % 8] for i in range(n_tags_first)] # Create scatter plot sns.lmplot("X coordinate", "Y coordinate", hue="tags_first", data=df, fit_reg=False, markers=markers_list, scatter_kws={"s": 150}) # Adjust borders and add title sns.set(font_scale=2) sns.plt.title('Visualization of TMT articles in a 2-dimensional space') sns.plt.subplots_adjust(right=0.80, top=0.90, left=0.12, bottom=0.12) # Show plot sns.plt.show() # Train recommender
Example #8
Source File: plotting.py From nltools with MIT License | 5 votes |
def probability_plot(stats_output): """ Plot Classification Probability Args: stats_output: a pandas file with prediction output Returns: fig: Will return a seaborn scatterplot """ if "Probability_xval" in stats_output.columns: sns.lmplot("Y", "Probability_xval", data=stats_output, logistic=True) else: sns.lmplot("Y", "Probability_all", data=stats_output, logistic=True) plt.xlabel("Y", fontsize=16) plt.ylabel("Predicted Probability", fontsize=16) plt.title("Prediction", fontsize=18) return # # and plot the result # plt.figure(1, figsize=(4, 3)) # plt.clf() # plt.scatter(X.ravel(), y, color='black', zorder=20) # X_test = np.linspace(-5, 10, 300) # def model(x): # return 1 / (1 + np.exp(-x)) # loss = model(X_test * clf.coef_ + clf.intercept_).ravel() # plt.plot(X_test, loss, color='blue', linewidth=3)
Example #9
Source File: plots.py From cdlib with BSD 2-Clause "Simplified" License | 5 votes |
def plot_com_properties_relation(com_clusters, com_fitness_x, com_fitness_y, **kwargs): """ Plot the relation between two properties/fitness function of a clustering :param com_clusters: clustering(s) to analyze (cluster or cluster list) :param com_fitness_x: first fitness/community property :param com_fitness_y: first fitness/community property :param kwargs: parameters for the seaborn lmplot :return: a seaborn lmplot Example: >>> from cdlib import algorithms, viz, evaluation >>> import networkx as nx >>> g = nx.karate_club_graph() >>> coms = algorithms.louvain(g) >>> coms2 = algorithms.walktrap(g) >>> lmplot = viz.plot_com_properties_relation([coms,coms2],evaluation.size,evaluation.internal_edge_density) """ if isinstance(com_clusters, cdlib.classes.clustering.Clustering): com_clusters = [com_clusters] for_df = [] for c in com_clusters: x = com_fitness_x(c.graph, c, summary=False) y = com_fitness_y(c.graph, c, summary=False) for i, vx in enumerate(x): for_df.append([c.get_description(), vx, y[i]]) df = pd.DataFrame(columns=["Method", com_fitness_x.__name__, com_fitness_y.__name__], data=for_df) ax = sns.lmplot(x=com_fitness_x.__name__, y=com_fitness_y.__name__, data=df, hue="Method", fit_reg=False,legend=False, x_bins=100,**kwargs) plt.legend(loc='best') # if log_x: # ax.set_xscale("log") # if log_y: # ax.set_yscale("log") plt.tight_layout() return ax
Example #10
Source File: TestDataframePlotting.py From faas-profiler with MIT License | 4 votes |
def PerfMonPlotter(perf_mon_records, time_window = None): """ For plotting performance monitoring records. """ # Entire records pqos_records = perf_mon_records['pqos_records'] # perf_records = perf_mon_records['perf_records'] # # Select a time window if provided # if time_window is not None: # test_start = pqos_records['timestamp'].min() # time_window = [5, 10] # selection_bounds = [test_start + timedelta(seconds=time_window[0]), \ # test_start + timedelta(seconds=time_window[1])] # pqos_records['In Test Bound'] = (pqos_records['timestamp']>selection_bounds[0]) \ # & (pqos_records['timestamp']<selection_bounds[1]) # perf_records['In Test Bound'] = (perf_records['timestamp']>time_window[0]) \ # & (perf_records['timestamp']<time_window[1]) # pqos_df = pqos_records[pqos_records['In Test Bound']==True] # perf_df = perf_records[perf_records['In Test Bound']==True] palette = sns.color_palette("rocket_r", 16) # 'timestamp','Core','IPC','LLC Misses','LLC Util (KB)','MBL (MB/s)' fig, axs = plt.subplots(ncols=2, nrows=2, sharex=True) pqos_records_sum = pqos_records.groupby('timestamp').sum() pqos_records_sum.plot(y='IPC', ax=axs[0][0]) pqos_records_sum.plot(y='MBL (MB/s)', ax=axs[0][1]) pqos_records_sum.plot(y='LLC Util (KB)', ax=axs[1][0]) pqos_records_sum.plot(y='LLC Misses', ax=axs[1][1]) axs[0][0].set_ylim([0,20]) # sns.relplot(data=pqos_records, x='timestamp', y='IPC', hue='Core', kind='line', palette=palette, alpha=0.75) # sns.relplot(data=pqos_records, x='timestamp', y='MBL (MB/s)', hue='Core', kind='scatter', palette=palette, alpha=0.75) # sns.lmplot(data=pqos_df.groupby('timestamp').sum(), x='IPC', y='MBL (MB/s)', palette=palette, # truncate=True, order=5, fit_reg=False, scatter_kws={'alpha':0.5}, legend_out=False) # sns.jointplot(data=pqos_df.groupby('timestamp').sum(), x='LLC Util (KB)', y='MBL (MB/s)', kind="hex", zorder=0) # .plot_joint(sns.kdeplot, zorder=10, n_levels=25, bw='silverman') # cpu-cycles,L1-dcache-loads,L1-dcache-load-misses,L1-icache-load-misses,dTLB-load-misses,dTLB-loads, # iTLB-load-misses,iTLB-loads,branch-misses,context-switches,cpu-migrations,page-faults # sns.relplot(data=perf_records, x='timestamp', y='context-switches', kind='line', palette=palette, alpha=0.75) # plt.stackplot(perf_records['timestamp'], perf_records['r4f1'], perf_records['r2f1'], perf_records['r1f1']) # sns.relplot(data=perf_df, x='context-switches', y='r1f1', kind='scatter', palette=palette, alpha=0.75) # perf_records['Branch Miss Rate (%)'] = 100.0*perf_records['branch-misses']/perf_records['branches'] # sns.lmplot(data=perf_records, x='context-switches', y='block:block_plug', # truncate=True, order=8, scatter_kws={'alpha':0.5}, legend_out=False) # sns.jointplot(data=perf_df, x='dTLB-loads', y='iTLB-loads', kind="hex", zorder=0) plt.show() plt.close() return True