Python seaborn.load_dataset() Examples
The following are 2
code examples of seaborn.load_dataset().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
seaborn
, or try the search function
.
Example #1
Source File: test_viz.py From mpl-probscale with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_probplot_with_FacetGrid_with_markers(usemarkers): iris = seaborn.load_dataset("iris") hue_kws = None species = sorted(iris['species'].unique()) markers = ['o', 'o', 'o'] if usemarkers: markers = ['o', 's', '^'] hue_kws = {'marker': markers} fg = ( seaborn.FacetGrid(data=iris, hue='species', hue_kws=hue_kws) .map(viz.probplot, 'sepal_length') .set_axis_labels(x_var='Probability', y_var='Sepal Length') .add_legend() ) _lines = filter(lambda x: isinstance(x, matplotlib.lines.Line2D), fg.ax.get_children()) result_markers = { l.get_label(): l.get_marker() for l in _lines } expected_markers = dict(zip(species, markers)) assert expected_markers == result_markers
Example #2
Source File: parkDataVisulization.py From python-urbanPlanning with MIT License | 5 votes |
def heatmap_pData(df): import pandas as pd import seaborn as sns sns.set() # Load the brain networks example dataset # df = sns.load_dataset("brain_networks", header=[0, 1, 2], index_col=0) # Select a subset of the networks used_networks = [1, 5, 6, 7, 8, 12, 13, 17] # used_columns = [True,]*len(df.columns) # print(len(used_columns)) # print(used_columns) # df = df.loc[:, used_columns] columnsList=['shapelyArea', 'shapelyLength','shapeIdx', 'FRAC', 'popu_mean', 'popu_std','SVFW_mean', 'SVFW_std', 'SVFep_std', 'SVFep_median','SVFep_majority', 'SVFep_minority', 'facilityFre', 'HVege_mean','HVege_count','MVege_mean', 'MVege_count','LVege_mean', 'LVege_count', 'cla_treeCanopy', 'cla_grassShrub', 'cla_bareSoil','cla_buildings', 'cla_roadsRailraods', 'cla_otherPavedSurfaces','cla_water', ] df=df[columnsList] # Create a categorical palette to identify the networks network_pal = sns.husl_palette(8, s=.45) network_lut = dict(zip(map(str, used_networks), network_pal)) # Convert the palette to vectors that will be drawn on the side of the matrix networks = df.columns network_colors = pd.Series(networks, index=df.columns).map(network_lut) # Draw the full plot sns.clustermap(df.corr(), center=0, cmap="vlag", row_colors=network_colors, col_colors=network_colors, linewidths=.75, figsize=(13, 13))