Python seaborn.kdeplot() Examples
The following are 30
code examples of seaborn.kdeplot().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
seaborn
, or try the search function
.
Example #1
Source File: visualizations.py From Brancher with MIT License | 7 votes |
def plot_posterior(model, variables, number_samples=1000): # Get samples sample = model.get_sample(number_samples) post_sample = model.get_posterior_sample(number_samples) # Join samples sample["Mode"] = "Prior" post_sample["Mode"] = "Posterior" subsample = sample[variables + ["Mode"]] post_subsample = post_sample[variables + ["Mode"]] joint_subsample = subsample.append(post_subsample) # Plot posterior warnings.filterwarnings('ignore') g = sns.PairGrid(joint_subsample, hue="Mode") g = g.map_offdiag(sns.kdeplot) g = g.map_diag(sns.kdeplot, lw=3, shade=True) g = g.add_legend() warnings.filterwarnings('default')
Example #2
Source File: mouse_brain_astrocyte.py From geosketch with MIT License | 7 votes |
def astro_oligo_joint(X, genes, gene1, gene2, labels, focus, name): X = X.toarray() gidx1 = list(genes).index(gene1) gidx2 = list(genes).index(gene2) idx = labels == focus x1 = X[(idx, gidx1)] x2 = X[(idx, gidx2)] plt.figure() sns.jointplot( x1, x2, kind='scatter', space=0, alpha=0.3 ).plot_joint(sns.kdeplot, zorder=0, n_levels=10) plt.savefig('{}_joint_{}_{}_{}.png'.format(name, focus, gene1, gene2))
Example #3
Source File: plot_functions.py From idea_relations with MIT License | 7 votes |
def joint_plot(x, y, xlabel=None, ylabel=None, xlim=None, ylim=None, loc="best", color='#0485d1', size=8, markersize=50, kind="kde", scatter_color="r"): with sns.axes_style("darkgrid"): if xlabel and ylabel: g = SubsampleJointGrid(xlabel, ylabel, data=DataFrame(data={xlabel: x, ylabel: y}), space=0.1, ratio=2, size=size, xlim=xlim, ylim=ylim) else: g = SubsampleJointGrid(x, y, size=size, space=0.1, ratio=2, xlim=xlim, ylim=ylim) g.plot_joint(sns.kdeplot, shade=True, cmap="Blues") g.plot_sub_joint(plt.scatter, 1000, s=20, c=scatter_color, alpha=0.3) g.plot_marginals(sns.distplot, kde=False, rug=False) g.annotate(ss.pearsonr, fontsize=25, template="{stat} = {val:.2g}\np = {p:.2g}") g.ax_joint.set_yticklabels(g.ax_joint.get_yticks()) g.ax_joint.set_xticklabels(g.ax_joint.get_xticks()) return g
Example #4
Source File: mouse_brain_subcluster.py From geosketch with MIT License | 6 votes |
def astro_oligo_joint(X, genes, gene1, gene2, labels, focus, name): X = X.toarray() gidx1 = list(genes).index(gene1) gidx2 = list(genes).index(gene2) idx = labels == focus x1 = X[(idx, gidx1)] x2 = X[(idx, gidx2)] plt.figure() sns.jointplot( x1, x2, kind='scatter', space=0, alpha=0.3 ).plot_joint(sns.kdeplot, zorder=0, n_levels=10) plt.savefig('{}_joint_{}_{}_{}.png'.format(name, focus, gene1, gene2))
Example #5
Source File: artificial_example.py From mann with GNU General Public License v3.0 | 6 votes |
def plot_activations(a_s,a_t,save_name): """ activation visualization via seaborn library """ n_dim=a_s.shape[1] n_rows=1 n_cols=int(n_dim/n_rows) fig, axs = plt.subplots(nrows=n_rows,ncols=n_cols, sharey=True, sharex=True) for k,ax in enumerate(axs.reshape(-1)): if k>=n_dim: continue sns.kdeplot(a_t[:,k],ax=ax, shade=True, label='target', legend=False, color='0.4',bw=0.03) sns.kdeplot(a_s[:,k],ax=ax, shade=True, label='source', legend=False, color='0',bw=0.03) plt.setp(ax.xaxis.get_ticklabels(),fontsize=10) plt.setp(ax.yaxis.get_ticklabels(),fontsize=10) fig.set_figheight(3) plt.setp(axs, xticks=[0, 0.5, 1]) plt.setp(axs, ylim=[0,10]) plt.savefig(save_name) # load dataset
Example #6
Source File: plotting.py From fitbit-analyzer with Apache License 2.0 | 6 votes |
def plotCorrelation(stats): #columnsToDrop = ['sleep_interval_max_len', 'sleep_interval_min_len', # 'sleep_interval_avg_len', 'sleep_inefficiency', # 'sleep_hours', 'total_hours'] #stats = stats.drop(columnsToDrop, axis=1) g = sns.PairGrid(stats) def corrfunc(x, y, **kws): r, p = scipystats.pearsonr(x, y) ax = plt.gca() ax.annotate("r = {:.2f}".format(r),xy=(.1, .9), xycoords=ax.transAxes) ax.annotate("p = {:.2f}".format(p),xy=(.2, .8), xycoords=ax.transAxes) if p>0.04: ax.patch.set_alpha(0.1) g.map_upper(plt.scatter) g.map_diag(plt.hist) g.map_lower(sns.kdeplot, cmap="Blues_d") g.map_upper(corrfunc) sns.plt.show()
Example #7
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #8
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #9
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #10
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #11
Source File: visualize.py From adversarial-policies with MIT License | 5 votes |
def comparative_densities( env, victim_id, n_components, covariance, cutoff_point=None, savefile=None, **kwargs ): """PDF of different opponents density distribution. For unspecified parameters, see get_full_directory. :param cutoff_point: (float): left x-limit. :param savefile: (None or str) path to save figure to. :param kwargs: (dict) passed through to sns.kdeplot.""" df = load_metadata(env, victim_id, n_components, covariance) fig = plt.figure(figsize=(10, 7)) grped = df.groupby("opponent_id") for name, grp in grped: # clean up random_none to just random name = name.replace("_none", "") avg_log_proba = np.mean(grp["log_proba"]) sns.kdeplot(grp["log_proba"], label=f"{name}: {round(avg_log_proba, 2)}", **kwargs) xmin, xmax = plt.xlim() xmin = max(xmin, cutoff_point) plt.xlim((xmin, xmax)) plt.suptitle(f"{env} Densities, Victim Zoo {victim_id}: Trained on Zoo 1", y=0.95) plt.title("Avg Log Proba* in Legend") if savefile is not None: fig.savefig(f"{savefile}.pdf")
Example #12
Source File: example_viz_parametric_tSNE.py From parametric_tsne with MIT License | 5 votes |
def _plot_kde(output_res, pick_rows, color_palette, alpha=0.5): num_clusters = len(set(pick_rows)) for ci in range(num_clusters): cur_plot_rows = pick_rows == ci cur_cmap = sns.light_palette(color_palette[ci], as_cmap=True) sns.kdeplot(output_res[cur_plot_rows, 0], output_res[cur_plot_rows, 1], cmap=cur_cmap, shade=True, alpha=alpha, shade_lowest=False) centroid = output_res[cur_plot_rows, :].mean(axis=0) plt.annotate('%s' % ci, xy=centroid, xycoords='data', alpha=0.5, horizontalalignment='center', verticalalignment='center')
Example #13
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #14
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #15
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #16
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #17
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #18
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #19
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #20
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #21
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #22
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #23
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #24
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #25
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #26
Source File: model_visualizer.py From U-Net-Fixed-Point-Quantization-for-Medical-Image-Segmentation with MIT License | 5 votes |
def plot_tensor(tensor, ax, name, config): tensor = torch.abs(tensor) #import ipdb as pdb; pdb.set_trace() #print(tensor.shape) ax.set_title(name, fontsize="small") ax.xaxis.set_tick_params(labelsize=6) ax.yaxis.set_tick_params(labelsize=6) if config["quantization"].lower() == "fixed": #ax.hist(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), normed=True) sns.distplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, kde_kws={"color": "r"}) #sns.kdeplot(quant.to_fixed_point(tensor, config["weight_i_width"], config["weight_f_width"]).detach().numpy(), ax=ax, shade=True) elif config["quantization"].lower() == "normal": sns.distplot(tensor.detach().numpy(), ax=ax, kde_kws={"color": "r"})
Example #27
Source File: verification.py From msprime with GNU General Public License v3.0 | 5 votes |
def plot_breakpoints_hist(v1, v2, v1_name, v2_name): sns.kdeplot(v1, color="b", label=v1_name, shade=True, legend=False) sns.kdeplot(v2, color="r", label=v2_name, shade=True, legend=False) pyplot.legend(loc="upper right")
Example #28
Source File: visualizations.py From Brancher with MIT License | 5 votes |
def _joint_grid(col_x, col_y, col_k, df, k_is_color=False, scatter_alpha=.85): def colored_kde(x, y, c=None): def kde(*args, **kwargs): args = (x, y) if c is not None: kwargs['c'] = c kwargs['alpha'] = scatter_alpha sns.kdeplot(*args, **kwargs) return kde g = sns.JointGrid( x=col_x, y=col_y, data=df ) color = None legends = [] for name, df_group in df.groupby(col_k): legends.append(name) if k_is_color: color=name g.plot_joint( colored_kde(df_group[col_x], df_group[col_y], color), ) sns.kdeplot( df_group[col_x].values, ax=g.ax_marg_x, color=color, shade=True ) sns.kdeplot( df_group[col_y].values, ax=g.ax_marg_y, color=color, shade=True, vertical=True ) plt.legend(legends)
Example #29
Source File: visualizations.py From Brancher with MIT License | 5 votes |
def plot_density(model, variables, number_samples=2000): sample = model.get_sample(number_samples) warnings.filterwarnings('ignore') g = sns.PairGrid(sample[variables]) g = g.map_offdiag(sns.kdeplot) g = g.map_diag(sns.kdeplot, lw=3, shade=True) g = g.add_legend() warnings.filterwarnings('default')
Example #30
Source File: ave_splitter.py From AMPL with MIT License | 5 votes |
def plot_nn_dist_distr(params): """ Plot distributions of nearest neighbor distances """ import matplotlib.pyplot as plt import seaborn as sns split_set, aa_dist, ii_dist, ai_dist, ia_dist, thresholds = params[:] vaI, viI, taI, tiI = split_set # get the slices of the distance matrices aTest_aTrain_D = aa_dist[ np.ix_( vaI, taI ) ] aTest_iTrain_D = ai_dist[ np.ix_( vaI, tiI ) ] iTest_aTrain_D = ia_dist[ np.ix_( viI, taI ) ] iTest_iTrain_D = ii_dist[ np.ix_( viI, tiI ) ] aa_nn_dist = np.min(aTest_aTrain_D, axis=1) ai_nn_dist = np.min(aTest_iTrain_D, axis=1) ia_nn_dist = np.min(iTest_aTrain_D, axis=1) ii_nn_dist = np.min(iTest_iTrain_D, axis=1) # Plot distributions of nearest-neighbor distances fig, axes = plt.subplots(2, 2, figsize=(12,12)) sns.kdeplot(aa_nn_dist, ax=axes[0,0]) axes[0,0].set_title('AA') sns.kdeplot(ai_nn_dist, ax=axes[0,1]) axes[0,1].set_title('AI') sns.kdeplot(ia_nn_dist, ax=axes[1,0]) axes[1,0].set_title('II') sns.kdeplot(ii_nn_dist, ax=axes[1,1]) axes[1,1].set_title('IA') #*******************************************************************************************************************************************