Python seaborn.cubehelix_palette() Examples
The following are 7
code examples of seaborn.cubehelix_palette().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
seaborn
, or try the search function
.
Example #1
Source File: plot_heatmaps.py From pancanatlas_code_public with MIT License | 6 votes |
def plot_heatmap(outpath, df, sample_linkage, sample_colors, event_linkage, desc, sample_color_lut): assert desc.lower().startswith('altsplice') or desc.lower().startswith('expression') is_altsplice = desc.lower().startswith('altsplice') sys.setrecursionlimit(100000) print "Plotting data ... " graph = sns.clustermap(df.T, col_colors=sample_colors, col_linkage=sample_linkage, row_linkage=event_linkage, cmap = sns.cubehelix_palette(as_cmap=True)) graph.ax_heatmap.axis('off') graph.ax_col_dendrogram.set_title("%s Clustering" %' '.join(desc.split('_')).title()) graph.ax_heatmap.set_xlabel("Events") graph.ax_heatmap.set_ylabel("Samples") if is_altsplice: graph.cax.set_title("psi") else: graph.cax.set_title("log(counts)") add_legend(graph, sample_color_lut) plot_utils.save(outpath) return
Example #2
Source File: vis_corex.py From LinearCorex with GNU Affero General Public License v3.0 | 6 votes |
def plot_heatmaps(data, mis, column_label, cont, topk=30, prefix=''): cmap = sns.cubehelix_palette(as_cmap=True, light=.9) m, nv = mis.shape for j in range(m): inds = np.argsort(- mis[j, :])[:topk] if len(inds) >= 2: plt.clf() order = np.argsort(cont[:,j]) subdata = data[:, inds][order].T subdata -= np.nanmean(subdata, axis=1, keepdims=True) subdata /= np.nanstd(subdata, axis=1, keepdims=True) columns = [column_label[i] for i in inds] sns.heatmap(subdata, vmin=-3, vmax=3, cmap=cmap, yticklabels=columns, xticklabels=False, mask=np.isnan(subdata)) filename = '{}/heatmaps/group_num={}.png'.format(prefix, j) if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) plt.title("Latent factor {}".format(j)) plt.yticks(rotation=0) plt.savefig(filename, bbox_inches='tight') plt.close('all') #plot_rels(data[:, inds], map(lambda q: column_label[q], inds), colors=cont[:, j], # outfile=prefix + '/relationships/group_num=' + str(j), latent=labels[:, j], alpha=0.1)
Example #3
Source File: heatmap.py From mmvec with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _parse_heatmap_metadata_annotations(metadata_column, margin_palette): ''' Transform feature or sample metadata into color vector for annotating margin of clustermap. Parameters ---------- metadata_column: pd.Series of metadata for annotating plots margin_palette: str Name of color palette to use for annotating metadata along margin(s) of clustermap. Returns ------- Returns vector of colors for annotating clustermap and dict mapping colors to classes. ''' # Create a categorical palette to identify md col metadata_column = metadata_column.astype(str) col_names = sorted(metadata_column.unique()) # Select Color palette if margin_palette == 'colorhelix': col_palette = sns.cubehelix_palette( len(col_names), start=2, rot=3, dark=0.3, light=0.8, reverse=True) else: col_palette = sns.color_palette(margin_palette, len(col_names)) class_colors = dict(zip(col_names, col_palette)) # Convert the palette to vectors that will be drawn on the matrix margin col_colors = metadata_column.map(class_colors) return col_colors, class_colors
Example #4
Source File: vis_topic.py From corex_topic with Apache License 2.0 | 5 votes |
def plot_heatmaps(data, alpha, mis, column_label, cont, topk=40, athresh=0.2, prefix=''): import seaborn as sns cmap = sns.cubehelix_palette(as_cmap=True, light=.9) import matplotlib.pyplot as plt m, nv = mis.shape for j in range(m): inds = np.where(np.logical_and(alpha[j] > athresh, mis[j] > 0.))[0] inds = inds[np.argsort(- alpha[j, inds] * mis[j, inds])][:topk] if len(inds) >= 2: plt.clf() order = np.argsort(cont[:,j]) if type(data) == np.ndarray: subdata = data[:, inds][order].T else: # assume sparse subdata = data[:, inds].toarray() subdata = subdata[order].T columns = [column_label[i] for i in inds] fig, ax = plt.subplots(figsize=(20, 10)) sns.heatmap(subdata, vmin=0, vmax=1, cmap=cmap, yticklabels=columns, xticklabels=False, ax=ax, cbar_kws={"ticks": [0, 0.5, 1]}) plt.yticks(rotation=0) filename = '{}/heatmaps/group_num={}.png'.format(prefix, j) if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) plt.title("Latent factor {}".format(j)) plt.savefig(filename, bbox_inches='tight') plt.close('all') #plot_rels(data[:, inds], map(lambda q: column_label[q], inds), colors=cont[:, j], # outfile=prefix + '/relationships/group_num=' + str(j), latent=labels[:, j], alpha=0.1)
Example #5
Source File: __init__.py From pyani with MIT License | 5 votes |
def get_colorbar(dfr, classes): """Return a colorbar representing classes, for a Seaborn plot. :param dfr: :param classes: The aim is to get a pd.Series for the passed dataframe columns, in the form: 0 colour for class in col 0 1 colour for class in col 1 ... colour for class in col ... n colour for class in col n """ levels = sorted(list(set(classes.values()))) paldict = dict( zip( levels, sns.cubehelix_palette( len(levels), light=0.9, dark=0.1, reverse=True, start=1, rot=-2 ), ) ) lvl_pal = {cls: paldict[lvl] for (cls, lvl) in list(classes.items())} # Have to use string conversion of the dataframe index, here col_cb = pd.Series([str(_) for _ in dfr.index]).map(lvl_pal) # The col_cb Series index now has to match the dfr.index, but # we don't create the Series with this (and if we try, it # fails) - so change it with this line col_cb.index = dfr.index return col_cb # Add labels to the seaborn heatmap axes
Example #6
Source File: vis_corex.py From bio_corex with Apache License 2.0 | 5 votes |
def plot_heatmaps(data, labels, alpha, mis, column_label, cont, topk=20, prefix='', focus=''): cmap = sns.cubehelix_palette(as_cmap=True, light=.9) m, nv = mis.shape for j in range(m): inds = np.where(np.logical_and(alpha[j] > 0, mis[j] > 0.))[0] inds = inds[np.argsort(- alpha[j, inds] * mis[j, inds])][:topk] if focus in column_label: ifocus = column_label.index(focus) if not ifocus in inds: inds = np.insert(inds, 0, ifocus) if len(inds) >= 2: plt.clf() order = np.argsort(cont[:,j]) subdata = data[:, inds][order].T subdata -= np.nanmean(subdata, axis=1, keepdims=True) subdata /= np.nanstd(subdata, axis=1, keepdims=True) columns = [column_label[i] for i in inds] sns.heatmap(subdata, vmin=-3, vmax=3, cmap=cmap, yticklabels=columns, xticklabels=False, mask=np.isnan(subdata)) filename = '{}/heatmaps/group_num={}.png'.format(prefix, j) if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) plt.title("Latent factor {}".format(j)) plt.savefig(filename, bbox_inches='tight') plt.close('all') #plot_rels(data[:, inds], list(map(lambda q: column_label[q], inds)), colors=cont[:, j], # outfile=prefix + '/relationships/group_num=' + str(j), latent=labels[:, j], alpha=0.1)
Example #7
Source File: vis_corex.py From bio_corex with Apache License 2.0 | 5 votes |
def plot_pairplots(data, labels, alpha, mis, column_label, topk=5, prefix='', focus=''): cmap = sns.cubehelix_palette(as_cmap=True, light=.9) plt.rcParams.update({'font.size': 32}) m, nv = mis.shape for j in range(m): inds = np.where(np.logical_and(alpha[j] > 0, mis[j] > 0.))[0] inds = inds[np.argsort(- alpha[j, inds] * mis[j, inds])][:topk] if focus in column_label: ifocus = column_label.index(focus) if not ifocus in inds: inds = np.insert(inds, 0, ifocus) if len(inds) >= 2: plt.clf() subdata = data[:, inds] columns = [column_label[i] for i in inds] subdata = pd.DataFrame(data=subdata, columns=columns) try: sns.pairplot(subdata, kind="reg", diag_kind="kde", height=5, dropna=True) filename = '{}/pairplots_regress/group_num={}.pdf'.format(prefix, j) if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) plt.suptitle("Latent factor {}".format(j), y=1.01) plt.savefig(filename, bbox_inches='tight') plt.clf() except: pass subdata['Latent factor'] = labels[:,j] try: sns.pairplot(subdata, kind="scatter", dropna=True, vars=subdata.columns.drop('Latent factor'), hue="Latent factor", diag_kind="kde", height=5) filename = '{}/pairplots/group_num={}.pdf'.format(prefix, j) if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) plt.suptitle("Latent factor {}".format(j), y=1.01) plt.savefig(filename, bbox_inches='tight') plt.close('all') except: pass