Python seaborn.countplot() Examples
The following are 15
code examples of seaborn.countplot().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
seaborn
, or try the search function
.
Example #1
Source File: analysis.py From dl-eeg-review with MIT License | 7 votes |
def plot_country(df, save_cfg=cfg.saving_config): """Plot bar graph showing the country of the first author's affiliation. """ fig, ax = plt.subplots(figsize=(save_cfg['text_width'] / 4 * 3, save_cfg['text_height'] / 5)) sns.countplot(x=df['Country'], ax=ax, order=df['Country'].value_counts().index) ax.set_ylabel('Number of papers') ax.set_xlabel('') ax.set_xticklabels(ax.get_xticklabels(), rotation=90) plt.tight_layout() top3 = df['Country'].value_counts().index[:3] logger.info('Top 3 countries of first author affiliation: {}'.format(top3.values)) if save_cfg is not None: fname = os.path.join(save_cfg['savepath'], 'country') fig.savefig(fname + '.' + save_cfg['format'], **save_cfg) return ax
Example #2
Source File: analysis.py From dl-eeg-review with MIT License | 6 votes |
def plot_model_comparison(df, save_cfg=cfg.saving_config): """Plot bar graph showing the types of baseline models used. """ fig, ax = plt.subplots(figsize=(save_cfg['text_width'] / 4 * 2, save_cfg['text_height'] / 5)) sns.countplot(y=df['Baseline model type'].dropna(axis=0), ax=ax) ax.set_xlabel('Number of papers') ax.set_ylabel('') plt.tight_layout() model_prcts = df['Baseline model type'].value_counts() / df.shape[0] * 100 logger.info('% of studies that used at least one traditional baseline: {}'.format( model_prcts['Traditional pipeline'] + model_prcts['DL & Trad.'])) logger.info('% of studies that used at least one deep learning baseline: {}'.format( model_prcts['DL'] + model_prcts['DL & Trad.'])) logger.info('% of studies that did not report baseline comparisons: {}'.format( model_prcts['None'])) if save_cfg is not None: fname = os.path.join(save_cfg['savepath'], 'model_comparison') fig.savefig(fname + '.' + save_cfg['format'], **save_cfg) return ax
Example #3
Source File: analysis.py From dl-eeg-review with MIT License | 6 votes |
def plot_cross_validation(df, save_cfg=cfg.saving_config): """Plot bar graph of cross validation approaches. """ col = 'Cross validation (clean)' df[col] = df[col].fillna('N/M') cv_df = ut.split_column_with_multiple_entries( df, col, ref_col='Citation', sep=';\n', lower=False) fig, ax = plt.subplots( figsize=(save_cfg['text_width'] / 2, save_cfg['text_height'] / 5)) sns.countplot(y=cv_df[col], order=cv_df[col].value_counts().index, ax=ax) ax.set_xlabel('Number of papers') ax.set_ylabel('') plt.tight_layout() if save_cfg is not None: fname = os.path.join(save_cfg['savepath'], 'cross_validation') fig.savefig(fname + '.' + save_cfg['format'], **save_cfg) return ax
Example #4
Source File: eda.py From AI_in_Medicine_Clinical_Imaging_Classification with MIT License | 6 votes |
def plot_classification_frequency(df, category, file_name, convert_labels = False): ''' Plots the frequency at which labels occur INPUT df: Pandas DataFrame of the image name and labels category: category of labels, from 0 to 4 file_name: file name of the image convert_labels: argument specified for converting to binary classification OUTPUT Image of plot, showing label frequency ''' if convert_labels == True: labels['level'] = change_labels(labels, 'level') sns.set(style="whitegrid", color_codes=True) sns.countplot(x=category, data=labels) plt.title('Retinopathy vs Frequency') plt.savefig(file_name)
Example #5
Source File: eda.py From eyenet with MIT License | 6 votes |
def plot_classification_frequency(df, category, file_name, convert_labels = False): ''' Plots the frequency at which labels occur INPUT df: Pandas DataFrame of the image name and labels category: category of labels, from 0 to 4 file_name: file name of the image convert_labels: argument specified for converting to binary classification OUTPUT Image of plot, showing label frequency ''' if convert_labels == True: labels['level'] = change_labels(labels, 'level') sns.set(style="whitegrid", color_codes=True) sns.countplot(x=category, data=labels) plt.title('Retinopathy vs Frequency') plt.savefig(file_name)
Example #6
Source File: dataframe_explorer.py From pandasgui with MIT License | 6 votes |
def update_plot(self): plt.ioff() col = self.picker.currentText() plt.figure() arr = self.df[col].dropna() if self.df[col].dtype.name in ['object', 'bool', 'category']: ax = sns.countplot(y=arr, color='grey', order=arr.value_counts().iloc[:10].index) else: ax = sns.distplot(arr, color='black', hist_kws=dict(color='grey', alpha=1)) self.figure_viewer.setFigure(ax.figure) # Examples
Example #7
Source File: analysis.py From perses with MIT License | 5 votes |
def plot_chemical_trajectory(self, environment, filename): """ Plot the trajectory through chemical space. Parameters ---------- environment : str the name of the environment for which the chemical space trajectory is desired """ chemical_state_trajectory = self.extract_state_trajectory(environment) visited_states = list(set(chemical_state_trajectory)) state_trajectory = np.zeros(len(chemical_state_trajectory)) for idx, chemical_state in enumerate(chemical_state_trajectory): state_trajectory[idx] = visited_states.index(chemical_state) with PdfPages(filename) as pdf: sns.set(font_scale=2) fig = plt.figure(figsize=(28, 12)) plt.subplot2grid((1,2), (0,0)) ax = sns.scatterplot(np.arange(len(state_trajectory)), state_trajectory) plt.yticks(np.arange(len(visited_states)), visited_states) plt.title("Trajectory through chemical space in {}".format(environment)) plt.xlabel("iteration") plt.ylabel("chemical state") plt.tight_layout() plt.subplot2grid((1,2), (0,1)) ax = sns.countplot(y=state_trajectory) pdf.savefig(fig) plt.close()
Example #8
Source File: analysis.py From dl-eeg-review with MIT License | 5 votes |
def plot_type_of_paper(df, save_cfg=cfg.saving_config): """Plot bar graph showing the type of each paper (journal, conference, etc.). """ # Move supplements to journal paper category for the plot (a value of one is # not visible on a bar graph). df_plot = df.copy() df_plot.loc[df['Type of paper'] == 'Supplement', :] = 'Journal' fig, ax = plt.subplots(figsize=(save_cfg['text_width'] / 4, save_cfg['text_height'] / 5)) sns.countplot(x=df_plot['Type of paper'], ax=ax) ax.set_xlabel('') ax.set_ylabel('Number of papers') ax.set_xticklabels(ax.get_xticklabels(), rotation=90) plt.tight_layout() counts = df['Type of paper'].value_counts() logger.info('Number of journal papers: {}'.format(counts['Journal'])) logger.info('Number of conference papers: {}'.format(counts['Conference'])) logger.info('Number of preprints: {}'.format(counts['Preprint'])) logger.info('Number of papers that were initially published as preprints: ' '{}'.format(df[df['Type of paper'] != 'Preprint'][ 'Preprint first'].value_counts()['Yes'])) if save_cfg is not None: fname = os.path.join(save_cfg['savepath'], 'type_of_paper') fig.savefig(fname + '.' + save_cfg['format'], **save_cfg) return ax
Example #9
Source File: analysis.py From dl-eeg-review with MIT License | 5 votes |
def plot_hardware(df, save_cfg=cfg.saving_config): """Plot bar graph showing the hardware used in the study. """ col = 'EEG Hardware' hardware_df = ut.split_column_with_multiple_entries( df, col, ref_col='Citation', sep=',', lower=False) # Remove N/Ms because they make it hard to see anything hardware_df = hardware_df[hardware_df[col] != 'N/M'] # Add low cost column hardware_df['Low-cost'] = False low_cost_devices = ['EPOC (Emotiv)', 'OpenBCI (OpenBCI)', 'Muse (InteraXon)', 'Mindwave Mobile (Neurosky)', 'Mindset (NeuroSky)'] hardware_df.loc[hardware_df[col].isin(low_cost_devices), 'Low-cost'] = True fig, ax = plt.subplots(figsize=(save_cfg['text_width'] / 4 * 2, save_cfg['text_height'] / 5 * 2)) sns.countplot(hue=hardware_df['Low-cost'], y=hardware_df[col], ax=ax, order=hardware_df[col].value_counts().index, dodge=False) # sns.catplot(row=hardware_df['low_cost'], y=hardware_df['hardware']) ax.set_xlabel('Number of papers') ax.set_ylabel('') plt.tight_layout() if save_cfg is not None: fname = os.path.join(save_cfg['savepath'], 'hardware') fig.savefig(fname + '.' + save_cfg['format'], **save_cfg) return ax
Example #10
Source File: DataPrep.py From Fake_News_Detection with MIT License | 5 votes |
def create_distribution(dataFile): return sb.countplot(x='Label', data=dataFile, palette='hls') #by calling below we can see that training, test and valid data seems to be failry evenly distributed between the classes
Example #11
Source File: visualize_traindata.py From Supply-demand-forecasting with MIT License | 5 votes |
def weather_distribution(self): data_dir = g_singletonDataFilePath.getTrainDir() self.gapdf = self.load_weatherdf(data_dir) print self.gapdf['weather'].describe() # sns.distplot(self.gapdf['gap'],kde=False, bins=100); sns.countplot(x="weather", data=self.gapdf, palette="Greens_d"); plt.title('Countplot of Weather') # self.gapdf['weather'].plot(kind='bar') # plt.xlabel('Weather') # plt.title('Histogram of Weather') return
Example #12
Source File: utils.py From Machine-Learning-with-Python with MIT License | 5 votes |
def plot_data(data): # barplot for the depencent variable sns.countplot(x='y', data=data, palette='hls') plt.show() # check the missing values print(data.isnull().sum()) # customer distribution plot sns.countplot(y='job', data=data) plt.show() # customer marital status distribution sns.countplot(x='marital', data=data) plt.show() # barplot for credit in default sns.countplot(x='default', data=data) plt.show() # barptot for housing loan sns.countplot(x='housing', data=data) plt.show() # barplot for personal loan sns.countplot(x='loan', data=data) plt.show() # barplot for previous marketing campaign outcome sns.countplot(x='poutcome', data=data) plt.show()
Example #13
Source File: brute_force_plotter.py From brute-force-plotter with MIT License | 5 votes |
def bar_plot(data, col, hue=None, file_name=None): sns.countplot(col, hue=hue, data=data.sort_values(col)) sns.despine(left=True) subplots = [ x for x in plt.gcf().get_children() if isinstance(x, matplotlib.axes.Subplot) ] for plot in subplots: rectangles = [ x for x in plot.get_children() if isinstance(x, matplotlib.patches.Rectangle) ] autolabel(rectangles)
Example #14
Source File: plots.py From compose with BSD 3-Clause "New" or "Revised" License | 5 votes |
def distribution(self, **kwargs): """Plots the label distribution.""" self._label_times._assert_single_target() target_column = self._label_times.target_columns[0] dist = self._label_times[target_column] is_discrete = self._label_times.is_discrete[target_column] if is_discrete: ax = sns.countplot(dist, palette=COLOR, **kwargs) else: ax = sns.distplot(dist, kde=True, color=COLOR[1], **kwargs) ax.set_title('Label Distribution') ax.set_ylabel('Count') return ax
Example #15
Source File: coco_stats.py From COCO-Assistant with MIT License | 4 votes |
def cat_count(anns, names, show_count=False, save=False): fig, axes = plt.subplots(1, len(anns), sharey=False) # Making axes iterable if only single annotation is present if len(anns) == 1: axes = [axes] # Prepare annotations dataframe # This should be done at the start for ann, name, ax in zip(anns, names, axes): ann_df = pd.DataFrame(ann.anns).transpose() if 'category_name' in ann_df.columns: chart = sns.countplot(data=ann_df, x='category_name', order=ann_df['category_name'].value_counts().index, palette='Set1', ax=ax) else: # Add a new column -> category name ann_df['category_name'] = ann_df.apply(lambda row: ann.cats[row.category_id]['name'],axis=1) chart = sns.countplot(data=ann_df, x='category_name', order=ann_df['category_name'].value_counts().index, palette='Set1', ax=ax) chart.set_title(name) chart.set_xticklabels(chart.get_xticklabels(), rotation=90) if show_count is True: for p in chart.patches: height = p.get_height() chart.text(p.get_x() + p.get_width() / 2., height + 0.9, height, ha="center") plt.suptitle('Instances per category', fontsize=14, fontweight='bold') plt.tight_layout() fig = plt.gcf() fig.set_size_inches(11, 11) out_dir = os.path.join(os.getcwd(), 'results', 'plots') if save is True: if os.path.exists(out_dir) is False: os.mkdir(out_dir) plt.savefig(os.path.join(out_dir, "cat_dist" + ".png"), bbox_inches='tight', pad_inches=0, dpi=plt.gcf().dpi) plt.show()