Python seaborn.diverging_palette() Examples
The following are 11
code examples of seaborn.diverging_palette().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
seaborn
, or try the search function
.
Example #1
Source File: atoms.py From pyiron with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _scalars_to_hex_colors(scalar_field, start=None, end=None, cmap=None): """ Convert scalar values to hex codes using a colormap. Args: scalar_field (numpy.ndarray/list): Scalars to convert. start (float): Scalar value to map to the bottom of the colormap (values below are clipped). (Default is None, use the minimal scalar value.) end (float): Scalar value to map to the top of the colormap (values above are clipped). (Default is None, use the maximal scalar value.) cmap (matplotlib.cm): The colormap to use. (Default is None, which gives a blue-red divergent map.) Returns: (list): The corresponding hex codes for each scalar value passed in. """ if start is None: start = np.amin(scalar_field) if end is None: end = np.amax(scalar_field) interp = interp1d([start, end], [0, 1]) remapped_field = interp( np.clip(scalar_field, start, end) ) # Map field onto [0,1] if cmap is None: try: from seaborn import diverging_palette except ImportError: print( "The package seaborn needs to be installed for the plot3d() function!" ) cmap = diverging_palette(245, 15, as_cmap=True) # A nice blue-red palette return [ rgb2hex(cmap(scalar)[:3]) for scalar in remapped_field ] # The slice gets RGB but leaves alpha
Example #2
Source File: Auto_NLP.py From Auto_ViML with Apache License 2.0 | 5 votes |
def plot_confusion_matrix(y_test,y_pred, model_name='Model'): """ This plots a beautiful confusion matrix based on input: ground truths and predictions """ #Confusion Matrix '''Plotting CONFUSION MATRIX''' import matplotlib.pyplot as plt import seaborn as sns sns.set_style('darkgrid') '''Display''' from IPython.core.display import display, HTML display(HTML("<style>.container { width:95% !important; }</style>")) pd.options.display.float_format = '{:,.2f}'.format #Get the confusion matrix and put it into a df from sklearn.metrics import confusion_matrix, f1_score cm = confusion_matrix(y_test, y_pred) cm_df = pd.DataFrame(cm, index = np.unique(y_test).tolist(), columns = np.unique(y_test).tolist(), ) #Plot the heatmap plt.figure(figsize=(12, 8)) sns.heatmap(cm_df, center=0, cmap=sns.diverging_palette(220, 15, as_cmap=True), annot=True, fmt='g') plt.title(' %s \nF1 Score(avg = micro): %0.2f \nF1 Score(avg = macro): %0.2f' %( model_name,f1_score(y_test, y_pred, average='micro'),f1_score(y_test, y_pred, average='macro')), fontsize = 13) plt.ylabel('True label', fontsize = 13) plt.xlabel('Predicted label', fontsize = 13) plt.show(); ##############################################################################################
Example #3
Source File: Auto_NLP.py From Auto_ViML with Apache License 2.0 | 5 votes |
def plot_confusion_matrix(y_test,y_pred, model_name='Model'): """ This plots a beautiful confusion matrix based on input: ground truths and predictions """ #Confusion Matrix '''Plotting CONFUSION MATRIX''' import matplotlib.pyplot as plt import seaborn as sns sns.set_style('darkgrid') '''Display''' from IPython.core.display import display, HTML display(HTML("<style>.container { width:95% !important; }</style>")) pd.options.display.float_format = '{:,.2f}'.format #Get the confusion matrix and put it into a df from sklearn.metrics import confusion_matrix, f1_score cm = confusion_matrix(y_test, y_pred) cm_df = pd.DataFrame(cm, index = np.unique(y_test).tolist(), columns = np.unique(y_test).tolist(), ) #Plot the heatmap plt.figure(figsize=(12, 8)) sns.heatmap(cm_df, center=0, cmap=sns.diverging_palette(220, 15, as_cmap=True), annot=True, fmt='g') plt.title(' %s \nF1 Score(avg = micro): %0.2f \nF1 Score(avg = macro): %0.2f' %( model_name,f1_score(y_test, y_pred, average='micro'),f1_score(y_test, y_pred, average='macro')), fontsize = 13) plt.ylabel('True label', fontsize = 13) plt.xlabel('Predicted label', fontsize = 13) plt.show(); ##############################################################################################
Example #4
Source File: plotting.py From astrocats with MIT License | 5 votes |
def radiocolorf(freq): ffreq = (float(freq) - 1.0)/(45.0 - 1.0) pal = sns.diverging_palette(200, 60, l=80, as_cmap=True, center="dark") return rgb2hex(pal(ffreq))
Example #5
Source File: Auto_NLP.py From Auto_ViML with Apache License 2.0 | 4 votes |
def plot_classification_matrix(y_test, y_pred, model_name='Model'): """ This plots a beautiful classification report based on 2 inputs: ground truths and predictions """ # Classification Matrix '''Plotting CLASSIFICATION MATRIX''' import matplotlib.pyplot as plt import seaborn as sns sns.set_style('darkgrid') '''Display''' from IPython.core.display import display, HTML display(HTML("<style>.container { width:95% !important; }</style>")) pd.options.display.float_format = '{:,.2f}'.format #Get the confusion matrix and put it into a df from sklearn.metrics import precision_score from sklearn.metrics import classification_report from sklearn.metrics import precision_score cm = classification_report(y_test, y_pred,output_dict=True) cm_df = pd.DataFrame(cm) #Plot the heatmap plt.figure(figsize=(12, 8)) sns.heatmap(cm_df, center=0, cmap=sns.diverging_palette(220, 15, as_cmap=True), annot=True, fmt='0.2f') plt.title(""" %s \nAverage Precision Score(avg = micro): %0.2f \nAverage Precision Score(avg = macro): %0.2f""" %( model_name, precision_score(y_test,y_pred, average='micro'), precision_score(y_test, y_pred, average='macro')), fontsize = 13) plt.ylabel('True label', fontsize = 13) plt.xlabel('Predicted label', fontsize = 13) plt.show(); #################################################################################
Example #6
Source File: Auto_NLP.py From Auto_ViML with Apache License 2.0 | 4 votes |
def plot_classification_matrix(y_test, y_pred, model_name='Model'): """ This plots a beautiful classification report based on 2 inputs: ground truths and predictions """ # Classification Matrix '''Plotting CLASSIFICATION MATRIX''' import matplotlib.pyplot as plt import seaborn as sns sns.set_style('darkgrid') '''Display''' from IPython.core.display import display, HTML display(HTML("<style>.container { width:95% !important; }</style>")) pd.options.display.float_format = '{:,.2f}'.format #Get the confusion matrix and put it into a df from sklearn.metrics import precision_score from sklearn.metrics import classification_report from sklearn.metrics import precision_score cm = classification_report(y_test, y_pred,output_dict=True) cm_df = pd.DataFrame(cm) #Plot the heatmap plt.figure(figsize=(12, 8)) sns.heatmap(cm_df, center=0, cmap=sns.diverging_palette(220, 15, as_cmap=True), annot=True, fmt='0.2f') plt.title(""" %s \nAverage Precision Score(avg = micro): %0.2f \nAverage Precision Score(avg = macro): %0.2f""" %( model_name, precision_score(y_test,y_pred, average='micro'), precision_score(y_test, y_pred, average='macro')), fontsize = 13) plt.ylabel('True label', fontsize = 13) plt.xlabel('Predicted label', fontsize = 13) plt.show(); #################################################################################
Example #7
Source File: misc.py From mriqc with BSD 3-Clause "New" or "Revised" License | 4 votes |
def plot_corrmat(in_csv, out_file=None): import seaborn as sn sn.set(style="whitegrid") dataframe = pd.read_csv(in_csv, index_col=False, na_values="n/a", na_filter=False) colnames = dataframe.columns.ravel().tolist() for col in ["subject_id", "site", "modality"]: try: colnames.remove(col) except ValueError: pass # Correlation matrix corr = dataframe[colnames].corr() corr = corr.dropna((0, 1), "all") # Generate a mask for the upper triangle mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # Generate a custom diverging colormap cmap = sn.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio corrplot = sn.clustermap( corr, cmap=cmap, center=0.0, method="average", square=True, linewidths=0.5 ) plt.setp(corrplot.ax_heatmap.yaxis.get_ticklabels(), rotation="horizontal") # , mask=mask, square=True, linewidths=.5, cbar_kws={"shrink": .5}) if out_file is None: out_file = "corr_matrix.svg" fname, ext = op.splitext(out_file) if ext[1:] not in ["pdf", "svg", "png"]: ext = ".svg" out_file = fname + ".svg" corrplot.savefig( out_file, format=ext[1:], bbox_inches="tight", pad_inches=0, dpi=100 ) return corrplot
Example #8
Source File: contrasts.py From fitlins with Apache License 2.0 | 4 votes |
def plot_contrast_matrix(contrast_matrix, ornt='vertical', ax=None): """ Plot correlation matrix Parameters ---------- mat : DataFrame Design matrix with columns consisting of explanatory variables followed by confounds n_evs : int Number of explanatory variables to separate from confounds partial : {'upper', 'lower', None}, optional Plot matrix as upper triangular (default), lower triangular or full Returns ------- ax : Axes Axes containing plot """ if ax is None: plt.figure() ax = plt.gca() if ornt == 'horizontal': contrast_matrix = contrast_matrix.T vmax = np.abs(contrast_matrix.values).max() # Use a red/blue (+1/-1) diverging colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) sns.heatmap(contrast_matrix, vmin=-vmax, vmax=vmax, square=True, linewidths=0.5, cmap=cmap, cbar_kws={'shrink': 0.5, 'orientation': ornt, 'ticks': np.linspace(-vmax, vmax, 5)}, ax=ax) # Variables along top and left ax.xaxis.tick_top() xtl = ax.get_xticklabels() ax.set_xticklabels(xtl, rotation=90) return ax
Example #9
Source File: get_contact_trace.py From getcontacts with Apache License 2.0 | 4 votes |
def write_correlation(contact_frames, labels, output_file): # Example adapted from https://seaborn.pydata.org/examples/many_pairwise_correlations.html import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # print(contact_frames) sns.set(style="white") # Convert frames to pandas dataframe (rows are time, cols interactions) rows = max(map(max, contact_frames)) + 1 cols = len(contact_frames) d = pd.DataFrame(data=np.zeros(shape=(rows, cols)), columns=labels) for i, contacts in enumerate(contact_frames): d[labels[i]][contacts] = 1 # print(d) # Compute the correlation matrix dmat = d.corr() np.fill_diagonal(dmat.values, 0) # vmax = max(vmax, -vmin) # vmin = min(vmin, -vmax) vmax = 1 vmin = -1 # print(jac_sim) # print(vmin, vmax) # Generate a mask for the upper triangle mask = np.zeros_like(dmat, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # Set up the matplotlib figure f, ax = plt.subplots(figsize=(11, 9)) # plt.subplots(figsize=(11, 9)) # Generate a custom diverging colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio hm = sns.heatmap(dmat, mask=mask, cmap=cmap, vmax=vmax, vmin=vmin, center=0, square=True, linewidths=0) # sns.heatmap(corr, mask=mask, cmap=cmap, vmax=, center=0, square=True, linewidths=0, cbar_kws={"shrink": .5}) f.tight_layout() print("Writing correlation matrix to", output_file) f.savefig(output_file)
Example #10
Source File: get_contact_trace.py From getcontacts with Apache License 2.0 | 4 votes |
def write_jaccard(contact_frames, labels, output_file): # Example adapted from https://seaborn.pydata.org/examples/many_pairwise_correlations.html import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # print(contact_frames) sns.set(style="white") # Convert frames to pandas dataframe (rows are time, cols interactions) rows = max(map(max, contact_frames)) + 1 cols = len(contact_frames) d = pd.DataFrame(data=np.zeros(shape=(rows, cols)), columns=labels) for i, contacts in enumerate(contact_frames): d[labels[i]][contacts] = 1 # print(d) # Compute the correlation matrix from sklearn.metrics.pairwise import pairwise_distances jac_sim = 1 - pairwise_distances(d.T, metric="hamming") jac_sim = pd.DataFrame(jac_sim, index=d.columns, columns=d.columns) np.fill_diagonal(jac_sim.values, 0) vmax = max(jac_sim.max()) vmin = min(jac_sim.min()) # vmax = max(vmax, -vmin) # vmin = min(vmin, -vmax) vmax = 1 vmin = 0 # print(jac_sim) # print(vmin, vmax) # Generate a mask for the upper triangle mask = np.zeros_like(jac_sim, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # Set up the matplotlib figure f, ax = plt.subplots(figsize=(11, 9)) # plt.subplots(figsize=(11, 9)) # Generate a custom diverging colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio hm = sns.heatmap(jac_sim, mask=mask, cmap=cmap, vmax=vmax, vmin=vmin, center=0.5, square=True, linewidths=0) # sns.heatmap(corr, mask=mask, cmap=cmap, vmax=, center=0, square=True, linewidths=0, cbar_kws={"shrink": .5}) f.tight_layout() print("Writing Jaccard similarity to", output_file) f.savefig(output_file)
Example #11
Source File: showMatLabFig._spatioTemporal.py From python-urbanPlanning with MIT License | 4 votes |
def graphMerge(num_meanDis_DF): plt.clf() import plotly.express as px from plotly.offline import plot #01-draw scatter paring # coore_columns=["number","mean distance","PHMI"] # fig = px.scatter_matrix(num_meanDis_DF[coore_columns],width=1800, height=800) # # fig.show() #show in jupyter # plot(fig) #02-draw correlation using plt.matshow-A # Corrcoef=np.corrcoef(np.array(num_meanDis_DF[coore_columns]).transpose()) #sns_columns=["number","mean distance","PHMI"] # print(Corrcoef) # plt.matshow(num_meanDis_DF[coore_columns].corr()) # plt.xticks(range(len(coore_columns)), coore_columns) # plt.yticks(range(len(coore_columns)), coore_columns) # plt.colorbar() # plt.show() #03-draw correlation -B # Compute the correlation matrix # plt.clf() # corr_columns_b=["number","mean distance","PHMI"] # corr = num_meanDis_DF[corr_columns_b].corr() corr = num_meanDis_DF.corr() # # Generate a mask for the upper triangle # mask = np.triu(np.ones_like(corr, dtype=np.bool)) # # Set up the matplotlib figure # f, ax = plt.subplots(figsize=(11, 9)) # # Generate a custom diverging colormap # cmap = sns.diverging_palette(220, 10, as_cmap=True) # # Draw the heatmap with the mask and correct aspect ratio # sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0,square=True, linewidths=.5, cbar_kws={"shrink": .5}) #04 # Draw a heatmap with the numeric values in each cell plt.clf() sns.set() f, ax = plt.subplots(figsize=(15, 13)) sns.heatmap(corr, annot=True, fmt=".2f", linewidths=.5, ax=ax) #04-draw curves # plt.clf() # sns_columns=["number","mean distance","PHMI"] # sns.set(rc={'figure.figsize':(25,3)}) # sns.lineplot(data=num_meanDis_DF[sns_columns], palette="tab10", linewidth=2.5) #rpy2调用R编程,参考:https://rpy2.github.io/doc/v2.9.x/html/introduction.html