Python seaborn.color_palette() Examples
The following are 30
code examples of seaborn.color_palette().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
seaborn
, or try the search function
.
Example #1
Source File: evaluation.py From tsinfer with GNU General Public License v3.0 | 7 votes |
def edge_plot(ts, filename): n = ts.num_samples pallete = sns.color_palette("husl", 2 ** n - 1) lines = [] colours = [] for tree in ts.trees(): left, right = tree.interval for u in tree.nodes(): children = tree.children(u) # Don't bother plotting unary nodes, which will all have the same # samples under them as their next non-unary descendant if len(children) > 1: for c in children: lines.append([(left, c), (right, c)]) colours.append(pallete[unrank(tree.samples(c), n)]) lc = mc.LineCollection(lines, linewidths=2, colors=colours) fig, ax = plt.subplots() ax.add_collection(lc) ax.autoscale() save_figure(filename)
Example #2
Source File: burst_plot.py From FRETBursts with GNU General Public License v2.0 | 6 votes |
def _register_colormaps(): import matplotlib as mpl import seaborn as sns c = sns.color_palette('nipy_spectral', 64)[2:43] cmap = mpl.colors.LinearSegmentedColormap.from_list('alex_lv', c) cmap.set_under(alpha=0) mpl.cm.register_cmap(name='alex_lv', cmap=cmap) c = sns.color_palette('YlGnBu', 64)[16:] cmap = mpl.colors.LinearSegmentedColormap.from_list('alex', c) cmap.set_under(alpha=0) mpl.cm.register_cmap(name='alex_light', cmap=cmap) mpl.cm.register_cmap(name='YlGnBu_crop', cmap=cmap) mpl.cm.register_cmap(name='alex_dark', cmap=mpl.cm.GnBu_r) # Temporary hack to workaround issue # https://github.com/mwaskom/seaborn/issues/855 mpl.cm.alex_light = mpl.cm.get_cmap('alex_light') mpl.cm.alex_dark = mpl.cm.get_cmap('alex_dark') # Register colormaps on import if not mocking
Example #3
Source File: flower_classifier.py From deep-learning-flower-identifier with MIT License | 6 votes |
def plot_solution(image_path, model): """ Plot an image with the top 5 class prediction :param image_path: :param model: :return: """ # Set up plot plt.figure(figsize=(6, 10)) ax = plt.subplot(2, 1, 1) # Set up title flower_num = image_path.split('/')[3] title_ = cat_to_name[flower_num] # Plot flower img = process_image(image_path) imshow(img, ax, title=title_); # Make prediction probs, labs, flowers = predict(image_path, model) # Plot bar chart plt.subplot(2, 1, 2) sns.barplot(x=probs, y=flowers, color=sns.color_palette()[0]); plt.show()
Example #4
Source File: basenji_sat_h5.py From basenji with Apache License 2.0 | 6 votes |
def plot_sad(ax, sat_loss_ti, sat_gain_ti): """ Plot loss and gain SAD scores. Args: ax (Axis): matplotlib axis to plot to. sat_loss_ti (L_sm array): Minimum mutation delta across satmut length. sat_gain_ti (L_sm array): Maximum mutation delta across satmut length. """ rdbu = sns.color_palette('RdBu_r', 10) ax.plot(-sat_loss_ti, c=rdbu[0], label='loss', linewidth=1) ax.plot(sat_gain_ti, c=rdbu[-1], label='gain', linewidth=1) ax.set_xlim(0, len(sat_loss_ti)) ax.legend() # ax_sad.grid(True, linestyle=':') ax.xaxis.set_ticks([]) for axis in ['top', 'bottom', 'left', 'right']: ax.spines[axis].set_linewidth(0.5)
Example #5
Source File: utils.py From scikit-downscale with Apache License 2.0 | 6 votes |
def zscore_ds_plot(training, target, future, corrected): labels = ["training", "future", "target", "corrected"] colors = {k: c for (k, c) in zip(labels, sns.color_palette("Set2", n_colors=4))} alpha = 0.5 time_target = pd.date_range("1980-01-01", "1989-12-31", freq="D") time_training = time_target[~((time_target.month == 2) & (time_target.day == 29))] time_future = pd.date_range("1990-01-01", "1999-12-31", freq="D") time_future = time_future[~((time_future.month == 2) & (time_future.day == 29))] plt.figure(figsize=(8, 4)) plt.plot(time_training, training.uas, label="training", alpha=alpha, c=colors["training"]) plt.plot(time_target, target.uas, label="target", alpha=alpha, c=colors["target"]) plt.plot(time_future, future.uas, label="future", alpha=alpha, c=colors["future"]) plt.plot(time_future, corrected.uas, label="corrected", alpha=alpha, c=colors["corrected"]) plt.xlabel("Time") plt.ylabel("Eastward Near-Surface Wind (m s-1)") plt.legend() return
Example #6
Source File: plotting_utils.py From QUANTAXIS with MIT License | 6 votes |
def customize(func): """ 修饰器,设置输出图像内容与风格 """ @wraps(func) def call_w_context(*args, **kwargs): set_context = kwargs.pop("set_context", True) if set_context: color_palette = sns.color_palette("colorblind") with plotting_context(), axes_style(), color_palette: sns.despine(left=True) return func(*args, **kwargs) else: return func(*args, **kwargs) return call_w_context
Example #7
Source File: helpers.py From hypertools with MIT License | 6 votes |
def vals2colors(vals, cmap='GnBu_d',res=100): """Maps values to colors Args: values (list or list of lists) - list of values to map to colors cmap (str) - color map (default is 'husl') res (int) - resolution of the color map (default: 100) Returns: list of rgb tuples """ # flatten if list of lists if any(isinstance(el, list) for el in vals): vals = list(itertools.chain(*vals)) # get palette from seaborn palette = np.array(sns.color_palette(cmap, res)) ranks = np.digitize(vals, np.linspace(np.min(vals), np.max(vals)+1, res+1)) - 1 return [tuple(i) for i in palette[ranks, :]]
Example #8
Source File: cyclic_callbacks.py From lumin with Apache License 2.0 | 6 votes |
def plot(self): r''' Plots the history of the lr and momentum evolution as a function of iterations ''' with sns.axes_style(self.plot_settings.style), sns.color_palette(self.plot_settings.cat_palette): fig, axs = plt.subplots(2, 1, figsize=(self.plot_settings.w_mid, self.plot_settings.h_mid)) axs[1].set_xlabel("Iterations", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col) axs[0].set_ylabel("Learning Rate", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col) axs[1].set_ylabel("Momentum", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col) axs[0].plot(range(len(self.hist['lr'])), self.hist['lr']) axs[1].plot(range(len(self.hist['mom'])), self.hist['mom']) for ax in axs: ax.tick_params(axis='x', labelsize=self.plot_settings.tk_sz, labelcolor=self.plot_settings.tk_col) ax.tick_params(axis='y', labelsize=self.plot_settings.tk_sz, labelcolor=self.plot_settings.tk_col) plt.show()
Example #9
Source File: opt_callbacks.py From lumin with Apache License 2.0 | 6 votes |
def plot(self, n_skip:int=0, n_max:Optional[int]=None, lim_y:Optional[Tuple[float,float]]=None) -> None: r''' Plot the loss as a function of the LR. Arguments: n_skip: Number of initial iterations to skip in plotting n_max: Maximum iteration number to plot lim_y: y-range for plotting ''' # TODO: Decide on whether to keep this; could just pass to plot_lr_finders with sns.axes_style(self.plot_settings.style), sns.color_palette(self.plot_settings.cat_palette): plt.figure(figsize=(self.plot_settings.w_mid, self.plot_settings.h_mid)) plt.plot(self.history['lr'][n_skip:n_max], self.history['loss'][n_skip:n_max], label='Training loss', color='g') if np.log10(self.lr_bounds[1])-np.log10(self.lr_bounds[0]) >= 3: plt.xscale('log') plt.ylim(lim_y) plt.grid(True, which="both") plt.legend(loc=self.plot_settings.leg_loc, fontsize=self.plot_settings.leg_sz) plt.xticks(fontsize=self.plot_settings.tk_sz, color=self.plot_settings.tk_col) plt.yticks(fontsize=self.plot_settings.tk_sz, color=self.plot_settings.tk_col) plt.ylabel("Loss", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col) plt.xlabel("Learning rate", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col) plt.show()
Example #10
Source File: analysis.py From dl-eeg-review with MIT License | 6 votes |
def plot_architectures(df, save_cfg=cfg.saving_config): """Plot bar graph showing the architectures used in the study. """ fig, ax = plt.subplots(figsize=(save_cfg['text_width'] / 3, save_cfg['text_width'] / 3)) colors = sns.color_palette() counts = df['Architecture (clean)'].value_counts() _, _, pct = ax.pie(counts.values, labels=counts.index, autopct='%1.1f%%', wedgeprops=dict(width=0.3, edgecolor='w'), colors=colors, pctdistance=0.55) for i in pct: i.set_fontsize(5) ax.axis('equal') plt.tight_layout() if save_cfg is not None: fname = os.path.join(save_cfg['savepath'], 'architectures') fig.savefig(fname + '.' + save_cfg['format'], **save_cfg) return ax
Example #11
Source File: callbacks.py From ivis with GNU General Public License v2.0 | 6 votes |
def plot_embeddings(self, embeddings): embeddings = MinMaxScaler((0, 1)).fit_transform(self.embeddings) fig = plt.figure() buf = io.BytesIO() sns.scatterplot(x=embeddings[:, 0], y=embeddings[:, 1], s=1, hue=self.labels, palette=sns.color_palette("hls", self.n_classes), linewidth=0) plt.savefig(buf, format='png', dpi=300) plt.close(fig) buf.seek(0) image = tf.Summary.Image(encoded_image_string=buf.getvalue()) return image
Example #12
Source File: embedding.py From agnez with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _prepare_fig_labels(data, labels): '''Helper function for settiing up animation canvas ''' # we choose a color palette with seaborn. max_label = labels.max() palette = np.array(sns.color_palette("hls", max_label+1)) # we create a scatter plot. # we add the labels for each digit. t, b, d = data.shape data = data.transpose(1, 0, 2).reshape((t*b, d)) labels = labels[np.newaxis].repeat(t, axis=0).transpose(1, 0) labels = labels.flatten() fig = plt.figure(figsize=(8, 8)) return labels, palette, fig
Example #13
Source File: _plot.py From q2-qemistree with BSD 2-Clause "Simplified" License | 6 votes |
def format_colors(feature_metadata, category, color_palette): colors = [] annotations = feature_metadata[category].unique() color_map = values_to_colors(annotations, color_palette) colors.append('TREE_COLORS') colors.append('SEPARATOR TAB') colors.append('DATA') for idx in feature_metadata.index: color = color_map[feature_metadata.loc[idx, category]] if feature_metadata.loc[idx, 'structure_source'] == 'MS2': style, width = 'normal', 6 else: style, width = 'dashed', 4 colors.append('%s\tclade\t%s\t%s\t%s' % (idx, color, style, width)) return '\n'.join(colors)
Example #14
Source File: n2d.py From n2d with GNU General Public License v3.0 | 6 votes |
def plot(x, y, plot_id, names=None): viz_df = pd.DataFrame(data=x[:5000]) viz_df['Label'] = y[:5000] if names is not None: viz_df['Label'] = viz_df['Label'].map(names) viz_df.to_csv(args.save_dir + '/' + args.dataset + '.csv') plt.subplots(figsize=(8, 5)) sns.scatterplot(x=0, y=1, hue='Label', legend='full', hue_order=sorted(viz_df['Label'].unique()), palette=sns.color_palette("hls", n_colors=args.n_clusters), alpha=.5, data=viz_df) l = plt.legend(bbox_to_anchor=(-.1, 1.00, 1.1, .5), loc="lower left", markerfirst=True, mode="expand", borderaxespad=0, ncol=args.n_clusters + 1, handletextpad=0.01, ) l.texts[0].set_text("") plt.ylabel("") plt.xlabel("") plt.tight_layout() plt.savefig(args.save_dir + '/' + args.dataset + '-' + plot_id + '.png', dpi=300) plt.clf()
Example #15
Source File: typeI_analysis_2.py From SAMPL6 with MIT License | 5 votes |
def stacked_barplot_2groups(df, x_label, y_label1, y_label2, fig_size=(10, 7), invert=False): # Color grays = ["#95a5a6", "#34495e"] current_palette = sns.color_palette(grays) # Plot style plt.close() plt.style.use(["seaborn-talk", "seaborn-whitegrid"]) plt.rcParams['axes.labelsize'] = 18 plt.rcParams['xtick.labelsize'] = 14 plt.rcParams['ytick.labelsize'] = 16 plt.tight_layout() bar_width = 0.70 plt.figure(figsize=fig_size) data = df # Pandas DataFrame x = range(len(data[x_label])) y1 = data[y_label1] y2 = data[y_label2] p1 = plt.bar(x, y1, width=bar_width, color=current_palette[0]) p2 = plt.bar(x, y2, width=bar_width, bottom=y1, color=current_palette[1]) plt.xticks(x, data[x_label], rotation=90) plt.xlabel(x_label) plt.ylabel("number of $pK_{a}s$") plt.legend((p1[0], p2[0]), (y_label1, y_label2)) # Flip plot upside down if invert == True: ax = plt.gca() ax.invert_yaxis() # ============================================================================= # CONSTANTS # ============================================================================= # Paths to input data.
Example #16
Source File: typeIII_analysis.py From SAMPL6 with MIT License | 5 votes |
def barplot_with_CI_errorbars(df, x_label, y_label, y_lower_label, y_upper_label): """Creates bar plot of a given dataframe with asymmetric error bars for y axis. Args: df: Pandas Dataframe that should have columns with columnnames specified in other arguments. x_label: str, column name of x axis categories y_label: str, column name of y axis values y_lower_label: str, column name of lower error values of y axis y_upper_label: str, column name of upper error values of y axis """ # Column names for new columns for delta y_err which is calculated as | y_err - y | delta_lower_yerr_label = "$\Delta$" + y_lower_label delta_upper_yerr_label = "$\Delta$" + y_upper_label data = df # Pandas DataFrame data[delta_lower_yerr_label] = data[y_label] - data[y_lower_label] data[delta_upper_yerr_label] = data[y_upper_label] - data[y_label] # Color #current_palette = sns.color_palette() current_palette = sns.color_palette("GnBu_d") sns_color = current_palette[3] # Plot style plt.close() plt.style.use(["seaborn-talk", "seaborn-whitegrid"]) plt.rcParams['axes.labelsize'] = 18 plt.rcParams['xtick.labelsize'] = 14 plt.rcParams['ytick.labelsize'] = 16 #plt.tight_layout() # Plot x = range(len(data[y_label])) y = data[y_label] plt.bar(x, y) plt.xticks(x, data[x_label], rotation=90) plt.errorbar(x, y, yerr=(data[delta_lower_yerr_label], data[delta_upper_yerr_label]), fmt="none", ecolor=sns_color, capsize=3, capthick=True) plt.xlabel(x_label) plt.ylabel(y_label)
Example #17
Source File: embedding.py From agnez with BSD 3-Clause "New" or "Revised" License | 5 votes |
def embedding2dplot(data, labels, show_median=True, show_legend=True): '''2D embedding visualization. Modified from: https://beta.oreilly.com/learning/an-illustrated-introduction-to-the-t-sne-algorithm ''' # We choose a color palette with seaborn. max_label = labels.max() palette = np.array(sns.color_palette("hls", max_label+1)) # We create a scatter plot. fig = plt.figure(figsize=(8, 8)) ax = plt.subplot(aspect='equal') sc = ax.scatter(data[:, 0], data[:, 1], lw=0, s=40, c=palette[labels.astype(np.int)]) plt.xlim(-25, 25) plt.ylim(-25, 25) ax.axis('off') ax.axis('tight') # We add the labels for each cluster. if show_median: txts = [] for i in range(10): # Position of each label. xtext, ytext = np.median(data[labels == i, :], axis=0) txt = ax.text(xtext, ytext, str(i), fontsize=24) txt.set_path_effects([ PathEffects.Stroke(linewidth=5, foreground="w"), PathEffects.Normal()]) txts.append(txt) # Show labels as legend patches if show_legend: handles = _get_legend(palette, labels) ax.legend(handles=handles) return fig, ax, sc
Example #18
Source File: basenji_hidden.py From basenji with Apache License 2.0 | 5 votes |
def regplot(vals1, vals2, out_pdf, alpha=0.5, x_label=None, y_label=None): plt.figure() gold = sns.color_palette('husl', 8)[1] ax = sns.regplot( vals1, vals2, color='black', lowess=True, scatter_kws={'color': 'black', 's': 4, 'alpha': alpha}, line_kws={'color': gold}) xmin, xmax = plots.scatter_lims(vals1) ymin, ymax = plots.scatter_lims(vals2) ax.set_xlim(xmin, xmax) if x_label is not None: ax.set_xlabel(x_label) ax.set_ylim(ymin, ymax) if y_label is not None: ax.set_ylabel(y_label) ax.grid(True, linestyle=':') plt.savefig(out_pdf) plt.close() ################################################################################ # __main__ ################################################################################
Example #19
Source File: callbacks.py From ivis with GNU General Public License v2.0 | 5 votes |
def plot_embeddings(self, filename): embeddings = MinMaxScaler((0, 1)).fit_transform(self.embeddings) fig = plt.figure() sns.scatterplot(x=embeddings[:, 0], y=embeddings[:, 1], s=1, hue=self.labels, palette=sns.color_palette("hls", self.n_classes), linewidth=0) plt.savefig(os.path.join(self.log_dir, filename), dpi=300) plt.close(fig)
Example #20
Source File: analysis.py From dl-eeg-review with MIT License | 5 votes |
def plot_number_layers(df, save_cfg=cfg.saving_config): """Plot histogram of number of layers. """ fig, ax = plt.subplots( figsize=(save_cfg['text_width'] / 4 * 2, save_cfg['text_width'] / 3)) n_layers_df = df['Layers (clean)'].value_counts().reindex( [str(i) for i in range(1, 32)] + ['N/M']) n_layers_df = n_layers_df.dropna().astype(int) from matplotlib.colors import ListedColormap cmap = ListedColormap(sns.color_palette(None).as_hex()) n_layers_df.plot(kind='bar', width=0.8, rot=0, colormap=cmap, ax=ax) ax.set_xlabel('Number of layers') ax.set_ylabel('Number of papers') plt.tight_layout() if save_cfg is not None: fname = os.path.join(save_cfg['savepath'], 'number_layers') fig.savefig(fname + '.' + save_cfg['format'], **save_cfg) save_cfg2 = save_cfg.copy() save_cfg2['format'] = 'png' save_cfg2['dpi'] = 300 fig.savefig(fname + '.png', **save_cfg2) return ax
Example #21
Source File: analysis.py From dl-eeg-review with MIT License | 5 votes |
def plot_architectures_per_year(df, save_cfg=cfg.saving_config): """Plot stacked bar graph of architectures per year. """ fig, ax = plt.subplots( figsize=(save_cfg['text_width'] / 3 * 2, save_cfg['text_width'] / 3)) colors = sns.color_palette() df['Year'] = df['Year'].astype('int32') col_name = 'Architecture (clean)' df['Arch'] = df[col_name] order = df[col_name].value_counts().index counts = df.groupby(['Year', 'Arch']).size().unstack('Arch') counts = counts[order] counts.plot(kind='bar', stacked=True, title='', ax=ax, color=colors) ax.legend(loc='upper left', bbox_to_anchor=(1, 1)) ax.set_ylabel('Number of papers') ax.set_xlabel('') plt.tight_layout() if save_cfg is not None: fname = os.path.join(save_cfg['savepath'], 'architectures_per_year') fig.savefig(fname + '.' + save_cfg['format'], **save_cfg) return ax
Example #22
Source File: bam_cov.py From basenji with Apache License 2.0 | 5 votes |
def regplot_gc(vals1, vals2, model, out_pdf): gold = sns.color_palette('husl', 8)[1] plt.figure(figsize=(6, 6)) # plot data and seaborn model ax = sns.regplot( vals1, vals2, color='black', order=3, scatter_kws={'color': 'black', 's': 4, 'alpha': 0.5}, line_kws={'color': gold}) # plot my model predictions svals1 = np.sort(vals1) preds2 = model.predict(svals1[:, np.newaxis]) ax.plot(svals1, preds2) # adjust axis ymin, ymax = scatter_lims(vals2) ax.set_xlim(0.2, 0.8) ax.set_xlabel('GC%') ax.set_ylim(ymin, ymax) ax.set_ylabel('Coverage') ax.grid(True, linestyle=':') plt.savefig(out_pdf) plt.close()
Example #23
Source File: plotter.py From message-analyser with MIT License | 5 votes |
def barplot_messages_per_minutes(msgs, path_to_save, minutes=2): sns.set(style="whitegrid", palette="muted") sns.despine(top=True) messages_per_minutes = stools.get_messages_per_minutes(msgs, minutes) xticks_labels = stools.get_hours() xticks = [i * 60 // minutes for i in range(24)] min_minutes = len(min(messages_per_minutes.values(), key=lambda day: len(day))) max_minutes = len(max(messages_per_minutes.values(), key=lambda day: len(day))) pal = sns.color_palette("GnBu_d", max_minutes - min_minutes + 1)[::-1] ax = sns.barplot(x=list(range(len(messages_per_minutes))), y=[len(day) for day in messages_per_minutes.values()], edgecolor="none", palette=np.array(pal)[[len(day) - min_minutes for day in messages_per_minutes.values()]]) _change_bar_width(ax, 1.) ax.set(xlabel="hour", ylabel="messages") ax.set_xticklabels(xticks_labels) ax.tick_params(axis='x', bottom=True, color="#A9A9A9") plt.xticks(xticks, rotation=65) fig = plt.gcf() fig.set_size_inches(20, 10) fig.savefig(os.path.join(path_to_save, barplot_messages_per_minutes.__name__ + ".png"), dpi=500) # plt.show() log_line(f"{barplot_messages_per_minutes.__name__} was created.") plt.close("all")
Example #24
Source File: plotter.py From message-analyser with MIT License | 5 votes |
def barplot_messages_per_day(msgs, path_to_save): sns.set(style="whitegrid", palette="muted") sns.despine(top=True) messages_per_day_vals = stools.get_messages_per_day(msgs).values() xticks, xticks_labels, xlabel = _get_xticks(msgs) min_day = len(min(messages_per_day_vals, key=lambda day: len(day))) max_day = len(max(messages_per_day_vals, key=lambda day: len(day))) pal = sns.color_palette("Greens_d", max_day - min_day + 1)[::-1] ax = sns.barplot(x=list(range(len(messages_per_day_vals))), y=[len(day) for day in messages_per_day_vals], edgecolor="none", palette=np.array(pal)[[len(day) - min_day for day in messages_per_day_vals]]) _change_bar_width(ax, 1.) ax.set(xlabel=xlabel, ylabel="messages") ax.set_xticklabels(xticks_labels) ax.tick_params(axis='x', bottom=True, color="#A9A9A9") plt.xticks(xticks, rotation=65) fig = plt.gcf() fig.set_size_inches(20, 10) fig.savefig(os.path.join(path_to_save, barplot_messages_per_day.__name__ + ".png"), dpi=500) # plt.show() log_line(f"{barplot_messages_per_day.__name__} was created.") plt.close("all")
Example #25
Source File: opt_callbacks.py From lumin with Apache License 2.0 | 5 votes |
def plot_lr(self) -> None: r''' Plot the LR as a function of iterations. ''' with sns.axes_style(self.plot_settings.style), sns.color_palette(self.plot_settings.cat_palette): plt.figure(figsize=(self.plot_settings.h_small, self.plot_settings.h_small)) plt.plot(range(len(self.history['lr'])), self.history['lr']) plt.xticks(fontsize=self.plot_settings.tk_sz, color=self.plot_settings.tk_col) plt.yticks(fontsize=self.plot_settings.tk_sz, color=self.plot_settings.tk_col) plt.ylabel("Learning rate", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col) plt.xlabel("Iterations", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col) plt.show()
Example #26
Source File: bam_cov.py From basenji with Apache License 2.0 | 5 votes |
def regplot_shift(vals1, vals2, preds2, out_pdf): gold = sns.color_palette('husl', 8)[1] plt.figure(figsize=(6, 6)) # plot data and seaborn model ax = sns.regplot( vals1, vals2, color='black', order=3, scatter_kws={'color': 'black', 's': 4, 'alpha': 0.5}, line_kws={'color': gold}) # plot my model predictions ax.plot(vals1, preds2) # adjust axis ymin, ymax = scatter_lims(vals2) ax.set_xlabel('Shift') ax.set_ylim(ymin, ymax) ax.set_ylabel('Covariance') ax.grid(True, linestyle=':') plt.savefig(out_pdf) plt.close()
Example #27
Source File: plots.py From Comparative-Annotation-Toolkit with Apache License 2.0 | 5 votes |
def generic_unstacked_barplot(df, pdf, title_string, legend_labels, ylabel, names, box_label, bbox_to_anchor=(1.12, 0.7)): fig, ax = plt.subplots() bars = [] shorter_bar_width = bar_width / len(df) for i, (_, d) in enumerate(df.iterrows()): bars.append(ax.bar(np.arange(len(df.columns)) + shorter_bar_width * i, d, shorter_bar_width, color=sns.color_palette()[i], linewidth=0.0)) _generic_histogram(bars, legend_labels, title_string, pdf, ax, fig, ylabel, names, box_label, bbox_to_anchor)
Example #28
Source File: cyclic_callbacks.py From lumin with Apache License 2.0 | 5 votes |
def plot(self) -> None: r''' Plots the history of the parameter evolution as a function of iterations ''' with sns.axes_style(self.plot_settings.style), sns.color_palette(self.plot_settings.cat_palette): plt.figure(figsize=(self.plot_settings.w_mid, self.plot_settings.h_mid)) plt.xlabel("Iterations", fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col) plt.ylabel(self.param_name, fontsize=self.plot_settings.lbl_sz, color=self.plot_settings.lbl_col) plt.plot(range(len(self.hist)), self.hist) plt.xticks(fontsize=self.plot_settings.tk_sz, color=self.plot_settings.tk_col) plt.yticks(fontsize=self.plot_settings.tk_sz, color=self.plot_settings.tk_col) plt.show()
Example #29
Source File: training.py From lumin with Apache License 2.0 | 5 votes |
def plot_train_history(histories:List[Dict[str,List[float]]], savename:Optional[str]=None, ignore_trn=True, settings:PlotSettings=PlotSettings(), show:bool=True) -> None: r''' Plot histories object returned by :meth:`~lumin.nn.training.fold_train.fold_train_ensemble` showing the loss evolution over time per model trained. Arguments: histories: list of dictionaries mapping loss type to values at each (sub)-epoch savename: Optional name of file to which to save the plot of feature importances ignore_trn: whether to ignore training loss settings: :class:`~lumin.plotting.plot_settings.PlotSettings` class to control figure appearance show: whether or not to show the plot, or just save it ''' with sns.axes_style(**settings.style), sns.color_palette(settings.cat_palette) as palette: plt.figure(figsize=(settings.w_mid, settings.h_mid)) for i, history in enumerate(histories): if i == 0: for j, l in enumerate(history): if not('trn' in l and ignore_trn): plt.plot(history[l], color=palette[j], label=_lookup_name(l)) else: for j, l in enumerate(history): if not('trn' in l and ignore_trn): plt.plot(history[l], color=palette[j]) plt.legend(loc=settings.leg_loc, fontsize=settings.leg_sz) plt.xticks(fontsize=settings.tk_sz, color=settings.tk_col) plt.yticks(fontsize=settings.tk_sz, color=settings.tk_col) plt.xlabel("Epoch", fontsize=settings.lbl_sz, color=settings.lbl_col) plt.ylabel("Loss", fontsize=settings.lbl_sz, color=settings.lbl_col) if savename is not None: plt.savefig(f'{savename}{settings.format}', bbox_inches='tight') if show: plt.show()
Example #30
Source File: _plot.py From q2-qemistree with BSD 2-Clause "Simplified" License | 5 votes |
def values_to_colors(categories, color_palette: str): '''This function generates a color map (dict) for unique values in a user-specified feature metadata column.''' color_map = {} colors = sns.color_palette(color_palette, n_colors=len(categories)).as_hex() # give a heads up to the user if len(set(colors)) < len(categories): warnings.warn("The mapping between colors and categories" " is not unique, some colors have been repeated", UserWarning) for i, value in enumerate(categories): color_map[value] = colors[i] return color_map