Python seaborn.pointplot() Examples
The following are 8
code examples of seaborn.pointplot().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
seaborn
, or try the search function
.
Example #1
Source File: pltfile.py From CatLearn with GNU General Public License v3.0 | 6 votes |
def violinplot(set_size, p_error, subplot, i): """Make learning cuves with violinplot. Parameters ---------- set_size : list Size of sub-set of data/features which the model is based on. p_error : list The prediction error for plain vanilla ridge. subplot : int Which subplot being produced. i : int Which iteration in the featureselection. """ plt.figure(1) plt.subplot(int("22" + str(subplot))).set_title('Feature size ' + str(i), loc='left') plt.legend(loc='upper right') plt.ylabel('Prediction error') plt.xlabel('Data size') sns.violinplot(x=set_size, y=p_error, scale="count") sns.pointplot(x=set_size, y=p_error, ci=100, capsize=.2) if subplot == 4: plt.show()
Example #2
Source File: pltfile.py From CatLearn with GNU General Public License v3.0 | 6 votes |
def featselect_featvar_plot(p_error_select, number_feat): """Create learning curve with data size and prediction error. Parameters ---------- data_size : list Data_size for where the prediction were made. p_error : list Error for where the prediction were made. data_size_mean : list Mean of the data size in a sub-set. p_error_mean : list The mean error for the sub-set. corrected_std : array The standard deaviation for the sub-set of data. """ fig = plt.figure() fig.add_subplot(111) sns.violinplot(x=number_feat, y=p_error_select, scale="count") sns.pointplot(x=number_feat, y=p_error_select) plt.legend(loc='upper right') plt.ylabel('Prediction error') plt.xlabel('Data size') plt.show()
Example #3
Source File: mosdepth_region_plot.py From nano-snakemake with MIT License | 6 votes |
def main(): args = get_args() region_df = read_mosdepth(args.mosdepth_combined, args.region) fig, ax = plt.subplots(figsize=(16, 8)) ax = sns.pointplot(x="begin", y="coverage", hue="name", data=region_df, scale=0.1, ax=ax) ax.set(xlabel="position", ylabel="normalizes coverage") plt.xticks([tick for i, tick in enumerate(list(plt.xticks()[0])) if not i % 5], rotation=30, ha='center') plt.savefig("Mosdepth_{}.png".format(args.region), dpi=500, bbox_inches='tight')
Example #4
Source File: plotting.py From fitbit-analyzer with Apache License 2.0 | 6 votes |
def plotDailyStatsSleep(stats, columns=None): """ Plot daily stats. Fill all data range, and put NaN for days without measures :param data: data to plot """ MEASURE_NAME = 'date' if not columns: columns = ['sleep_inefficiency', 'sleep_hours'] dataToPlot = _prepareDailyStats(stats, columns) f, axes = getAxes(2,1) xTicksDiv = min(10, len(dataToPlot)) #xticks = [(x-pd.DateOffset(years=1, day=2)).date() for x in stats.date] xticks = [x.date() for x in dataToPlot.date] keptticks = xticks[::int(len(xticks)/xTicksDiv)] xticks = ['' for _ in xticks] xticks[::int(len(xticks)/xTicksDiv)] = keptticks for i, c in enumerate(columns): g =sns.pointplot(x=MEASURE_NAME, y=NAMES[c], data=dataToPlot, ax=axes[i]) g.set_xticklabels([]) g.set_xlabel('') g.set_xticklabels(xticks, rotation=45) sns.plt.show()
Example #5
Source File: plotting.py From fitbit-analyzer with Apache License 2.0 | 5 votes |
def _plotWeekdayByMonthStats(stats, stat_name): dataToPlot = _prepareWeekdayByMonthStats(stats) # Plot g = sns.pointplot(data=dataToPlot, x="day", y=stat_name, hue="month", order=dayOfWeekOrder) g.set(xlabel='') g.set_ylabel(NAMES[stat_name]) return g #sns.plt.show()
Example #6
Source File: test_maps.py From SAMRI with GNU General Public License v3.0 | 4 votes |
def test_population_roi_over_time(): # Style elements palette=["#56B4E9", "#E69F00"] data_dir = path.join(path.dirname(path.realpath(__file__)),"../../tests/data") data_path = path.join(data_dir,'drs_activity.csv') df = pd.read_csv(data_path) df = df.rename(columns={'t':'Mean t-Statistic'}) df['Session']=df['Session'].map({ 'ofM':'naïve', 'ofMaF':'acute', 'ofMcF1':'chronic/2w', 'ofMcF2':'chronic/4w', 'ofMpF':'post', }) # definitions for the axes left, width = 0.06, 0.9 bottom, height = 0.06, 0.9 session_coordinates = [left, bottom, width, height] roi_coordinates = [left+0.02, bottom+0.7, 0.3, 0.2] fig = plt.figure(1) ax1 = plt.axes(session_coordinates) sns.pointplot( x='Session', y='Mean t-Statistic', units='subject', data=df, hue='treatment', dodge=True, palette=palette, order=['naïve','acute','chronic/2w','chronic/4w','post'], ax=ax1, ci=95, ) ax2 = plt.axes(roi_coordinates) maps.atlas_label('/usr/share/mouse-brain-atlases/dsurqec_200micron_roi-dr.nii', scale=0.3, color="#E69F00", ax=ax2, annotate=False, alpha=0.8, ) plt.savefig('_test_population_roi_over_time.png')
Example #7
Source File: test_compound.py From SAMRI with GNU General Public License v3.0 | 4 votes |
def test_activity_timecourse_with_inlay(): import pandas as pd import matplotlib.pyplot as plt import samri.plotting.maps as maps import seaborn as sns from os import path # Style elements palette=["#56B4E9", "#E69F00"] data_dir = path.join(path.dirname(path.realpath(__file__)),"../../tests/data") data_path = path.join(data_dir,'drs_activity.csv') df = pd.read_csv(data_path) df = df.rename(columns={'t':'Mean t-Statistic'}) df['Session']=df['Session'].map({ 'ofM':'naïve', 'ofMaF':'acute', 'ofMcF1':'chronic/2w', 'ofMcF2':'chronic/4w', 'ofMpF':'post', }) # definitions for the axes left, width = 0.06, 0.9 bottom, height = 0.06, 0.9 session_coordinates = [left, bottom, width, height] roi_coordinates = [left+0.02, bottom+0.7, 0.3, 0.2] fig = plt.figure(1) ax1 = plt.axes(session_coordinates) sns.pointplot( x='Session', y='Mean t-Statistic', units='subject', data=df, hue='treatment', dodge=True, palette=palette, order=['naïve','acute','chronic/2w','chronic/4w','post'], ax=ax1, ci=95, ) ax2 = plt.axes(roi_coordinates) maps.atlas_label('/usr/share/mouse-brain-atlases/dsurqec_200micron_roi-dr.nii', scale=0.3, color="#E69F00", ax=ax2, annotate=False, alpha=0.8, ) plt.savefig('_activity_timecourse_with_inlay.png')
Example #8
Source File: distanceWeightCalculation_raster2Polygon.py From python-urbanPlanning with MIT License | 4 votes |
def visualisationDF(df): dataFrameInfoPrint(df) #graph-01 # df['shapelyArea'].plot.hist(alpha=0.5) #graph-02 # df['shapelyArea'].plot.kde() #graph-03 # df[['shapelyLength','shapeIdx']].plot.scatter('shapelyLength','shapeIdx') #normalize data in a range of columns cols_to_norm=['shapeIdx', 'FRAC'] df[cols_to_norm]=df[cols_to_norm].apply(lambda x: (x - x.min()) / (x.max() - x.min())) a='shapeIdx' b='FRAC' c='park_class' #graph-04 # sns.jointplot(a,b,df,kind='hex') #graph-05 # sns.jointplot(a, b, df, kind='kde') #graph-06 # sns.catplot(x='park_class',y=a,data=df) #graph-07 ''' # Initialize the figure f, ax = plt.subplots() sns.despine(bottom=True, left=True) # Show each observation with a scatterplot sns.stripplot(x=a, y=c, hue=c,data=df, dodge=True, alpha=.25, zorder=1) # Show the conditional means sns.pointplot(x=a, y=c, hue=c,data=df, dodge=.532, join=False, palette="dark",markers="d", scale=.75, ci=None) # Improve the legend handles, labels = ax.get_legend_handles_labels() ax.legend(handles[3:], labels[3:], title=b,handletextpad=0, columnspacing=1,loc="lower right", ncol=3, frameon=True) ''' #graph-08 # sns.catplot(x=c,y=a,data=df,kind='box') #graph-09 # sns.catplot(x=c,y=a,data=df,kind='violin') #graph-10 ''' f, axs = plt.subplots(1, 2, figsize=(12, 6)) # First axis df[b].plot.hist(ax=axs[0]) # Second axis df[b].plot.kde(ax=axs[1]) # Title f.suptitle(b) # Display plt.show() ''' #从新定义栅格投影,参考投影为vector .shp文件