Python skimage.img_as_float() Examples
The following are 30
code examples of skimage.img_as_float().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
skimage
, or try the search function
.
Example #1
Source File: preprocessing.py From video_to_sequence with BSD 2-Clause "Simplified" License | 6 votes |
def preprocess_frame(image, target_height=224, target_width=224): if len(image.shape) == 2: image = np.tile(image[:,:,None], 3) elif len(image.shape) == 4: image = image[:,:,:,0] image = skimage.img_as_float(image).astype(np.float32) height, width, rgb = image.shape if width == height: resized_image = cv2.resize(image, (target_height,target_width)) elif height < width: resized_image = cv2.resize(image, (int(width * float(target_height)/height), target_width)) cropping_length = int((resized_image.shape[1] - target_height) / 2) resized_image = resized_image[:,cropping_length:resized_image.shape[1] - cropping_length] else: resized_image = cv2.resize(image, (target_height, int(height * float(target_width) / width))) cropping_length = int((resized_image.shape[0] - target_width) / 2) resized_image = resized_image[cropping_length:resized_image.shape[0] - cropping_length,:] return cv2.resize(resized_image, (target_height, target_width))
Example #2
Source File: visualClef.py From Deep-Plant with BSD 3-Clause "New" or "Revised" License | 6 votes |
def crop_image(self, x, target_height=224, target_width=224): image = skimage.img_as_float(skimage.io.imread(x)).astype(np.float32) if len(image.shape) == 2: image = np.tile(image[:,:,None], 3) elif len(image.shape) == 4: image = image[:,:,:,0] height, width, rgb = image.shape if width == height: resized_image = cv2.resize(image, (target_height,target_width)) elif height < width: resized_image = cv2.resize(image, (int(width * float(target_height)/height), target_width)) cropping_length = int((resized_image.shape[1] - target_height) / 2) resized_image = resized_image[:,cropping_length:resized_image.shape[1] - cropping_length] else: resized_image = cv2.resize(image, (target_height, int(height * float(target_width) / width))) cropping_length = int((resized_image.shape[0] - target_width) / 2) resized_image = resized_image[cropping_length:resized_image.shape[0] - cropping_length,:] return cv2.resize(resized_image, (target_height, target_width)) ####### Network Parameters ########
Example #3
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def resize_rescale_imagenet(img, new_dims, interp_order=1, current_scale=None, no_clip=False): """ Resize an image array with interpolation, and rescale to be between Parameters ---------- im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns ------- im : resized ndarray with shape (new_dims[0], new_dims[1], K) """ img = skimage.img_as_float( img ) img = resize_image( img, new_dims, interp_order ) img = img[:,:,[2,1,0]] * 255. mean_bgr = [103.062623801, 115.902882574, 123.151630838] img = img - mean_bgr return img
Example #4
Source File: transform.py From deep_demosaick with MIT License | 6 votes |
def __call__(self, sample): image_gt, image_input, image_mosaic, filename = sample['image_gt'], sample['image_input'], \ sample['image_mosaic'], sample['filename'] h, w = image_gt.shape[:2] if isinstance(self.output_size, int): if h > w: new_h, new_w = self.output_size * h / w, self.output_size else: new_h, new_w = self.output_size, self.output_size * w / h else: new_h, new_w = self.output_size new_h, new_w = int(new_h), int(new_w) image_gt = transform.resize(skimage.img_as_float(image_gt), (new_h, new_w)) image_input = transform.resize(skimage.img_as_float(image_input), (new_h, new_w)) image_mosaic = transform.resize(skimage.img_as_float(image_mosaic), (new_h, new_w)) return {'image_gt': image_gt, 'image_input': image_input, 'image_mosaic': image_mosaic, 'filename': filename}
Example #5
Source File: StructuredForests.py From StructuredForests with BSD 2-Clause "Simplified" License | 6 votes |
def bsds500_test(model, input_root, output_root): from skimage import img_as_float, img_as_ubyte from skimage.io import imread, imsave if not os.path.exists(output_root): os.makedirs(output_root) image_dir = os.path.join(input_root, "BSDS500", "data", "images", "test") file_names = filter(lambda name: name[-3:] == "jpg", os.listdir(image_dir)) n_image = len(file_names) for i, file_name in enumerate(file_names): img = img_as_float(imread(os.path.join(image_dir, file_name))) edge = img_as_ubyte(model.predict(img)) imsave(os.path.join(output_root, file_name[:-3] + "png"), edge) sys.stdout.write("Processing Image %d/%d\r" % (i + 1, n_image)) sys.stdout.flush() print
Example #6
Source File: StructuredForests.py From StructuredForests with BSD 2-Clause "Simplified" License | 6 votes |
def bsds500_train(input_root): import scipy.io as SIO from skimage import img_as_float from skimage.io import imread dataset_dir = os.path.join(input_root, "BSDS500", "data") image_dir = os.path.join(dataset_dir, "images", "train") label_dir = os.path.join(dataset_dir, "groundTruth", "train") data = [] for file_name in os.listdir(label_dir): gts = SIO.loadmat(os.path.join(label_dir, file_name)) gts = gts["groundTruth"].flatten() bnds = [gt["Boundaries"][0, 0] for gt in gts] segs = [gt["Segmentation"][0, 0] for gt in gts] img = imread(os.path.join(image_dir, file_name[:-3] + "jpg")) img = img_as_float(img) data.append((img, bnds, segs)) return data
Example #7
Source File: caffe_image_features.py From neuralmonkey with BSD 3-Clause "New" or "Revised" License | 6 votes |
def crop_image(x, target_height=227, target_width=227): image = skimage.img_as_float(skimage.io.imread(x)).astype(np.float32) if len(image.shape) == 2: image = np.tile(image[:,:,None], 3) elif len(image.shape) == 4: image = image[:,:,:,0] height, width, rgb = image.shape if width == height: resized_image = skimage.transform.resize(image, (target_height,target_width)) elif height < width: resized_image = skimage.transform.resize(image, (int(width * float(target_height)/height), target_width)) cropping_length = int((resized_image.shape[1] - target_height) / 2) resized_image = resized_image[:,cropping_length:resized_image.shape[1] - cropping_length] else: resized_image = skimage.transform.resize(image, (target_height, int(height * float(target_width) / width))) cropping_length = int((resized_image.shape[0] - target_width) / 2) resized_image = resized_image[cropping_length:resized_image.shape[0] - cropping_length,:] return skimage.transform.resize(resized_image, (target_height, target_width))
Example #8
Source File: demo.py From lung-segmentation-2d with MIT License | 6 votes |
def loadDataGeneral(df, path, im_shape): X, y = [], [] for i, item in df.iterrows(): img = img_as_float(io.imread(path + item[0])) mask = io.imread(path + item[1]) img = transform.resize(img, im_shape) img = exposure.equalize_hist(img) img = np.expand_dims(img, -1) mask = transform.resize(mask, im_shape) mask = np.expand_dims(mask, -1) X.append(img) y.append(mask) X = np.array(X) y = np.array(y) X -= X.mean() X /= X.std() print '### Dataset loaded' print '\t{}'.format(path) print '\t{}\t{}'.format(X.shape, y.shape) print '\tX:{:.1f}-{:.1f}\ty:{:.1f}-{:.1f}\n'.format(X.min(), X.max(), y.min(), y.max()) print '\tX.mean = {}, X.std = {}'.format(X.mean(), X.std()) return X, y
Example #9
Source File: load_data.py From lung-segmentation-2d with MIT License | 6 votes |
def loadDataGeneral(df, path, im_shape): """Function for loading arbitrary data in standard formats""" X, y = [], [] for i, item in df.iterrows(): img = img_as_float(io.imread(path + item[0])) mask = io.imread(path + item[1]) img = transform.resize(img, im_shape) img = exposure.equalize_hist(img) img = np.expand_dims(img, -1) mask = transform.resize(mask, im_shape) mask = np.expand_dims(mask, -1) X.append(img) y.append(mask) X = np.array(X) y = np.array(y) X -= X.mean() X /= X.std() print '### Dataset loaded' print '\t{}'.format(path) print '\t{}\t{}'.format(X.shape, y.shape) print '\tX:{:.1f}-{:.1f}\ty:{:.1f}-{:.1f}\n'.format(X.min(), X.max(), y.min(), y.max()) print '\tX.mean = {}, X.std = {}'.format(X.mean(), X.std()) return X, y
Example #10
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def load_scaled_image( filename, color=True ): """ Load an image converting from grayscale or alpha as needed. From KChen Args: filename : string color : boolean flag for color format. True (default) loads as RGB while False loads as intensity (if image is already grayscale). Returns image : an image with type np.float32 in range [0, 1] of size (H x W x 3) in RGB or of size (H x W x 1) in grayscale. By kchen """ img = skimage.img_as_float(skimage.io.imread(filename, as_grey=not color)).astype(np.float32) if img.ndim == 2: img = img[:, :, np.newaxis] if color: img = np.tile(img, (1, 1, 3)) elif img.shape[2] == 4: img = img[:, :, :3] return img
Example #11
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def resize_rescale_image_low_sat(img, new_dims, new_scale, interp_order=1, current_scale=None, no_clip=False): """ Resize an image array with interpolation, and rescale to be between Parameters ---------- im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns ------- im : resized ndarray with shape (new_dims[0], new_dims[1], K) """ img = skimage.img_as_float( img ) img = resize_image( img, new_dims, interp_order ) img = np.clip(img, 0.1, 0.9) img = rescale_image( img, new_scale, current_scale=current_scale, no_clip=no_clip ) return img
Example #12
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def resize_rescale_image_low_sat_2(img, new_dims, new_scale, interp_order=1, current_scale=None, no_clip=False): """ Resize an image array with interpolation, and rescale to be between Parameters ---------- im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns ------- im : resized ndarray with shape (new_dims[0], new_dims[1], K) """ img = skimage.img_as_float( img ) img = resize_image( img, new_dims, interp_order ) img = np.clip(img, 0.2, 0.8) img = rescale_image( img, new_scale, current_scale=current_scale, no_clip=no_clip ) return img
Example #13
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def random_noise_image(img, new_dims, new_scale, interp_order=1 ): """ Add noise to an image Args: im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns: a noisy version of the original clean image """ img = skimage.util.img_as_float( img ) img = resize_image( img, new_dims, interp_order ) img = skimage.util.random_noise(img, var=0.01) img = rescale_image( img, new_scale ) return img ################# # Colorization # #################
Example #14
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def to_light(img, new_dims, new_scale, interp_order=1 ): """ Turn an image into lightness Args: im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns: a lightness version of the original image """ img = skimage.img_as_float( img ) img = resize_image( img, new_dims, interp_order ) img = skimage.color.rgb2lab(img)[:,:,0] img = rescale_image( img, new_scale, current_scale=[0,100]) return np.expand_dims(img,2)
Example #15
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def resize_rescale_image(img, new_dims, new_scale, interp_order=1, current_scale=None, no_clip=False): """ Resize an image array with interpolation, and rescale to be between Parameters ---------- im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns ------- im : resized ndarray with shape (new_dims[0], new_dims[1], K) """ img = skimage.img_as_float( img ) img = resize_image( img, new_dims, interp_order ) img = rescale_image( img, new_scale, current_scale=current_scale, no_clip=no_clip ) return img
Example #16
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def to_ab(img, new_dims, new_scale, interp_order=1 ): """ Turn an image into ab Args: im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns: a ab version of the original image """ img = skimage.img_as_float( img ) img = resize_image( img, new_dims, interp_order ) img = skimage.color.rgb2lab(img)[:,:,1:] img = rescale_image( img, new_scale, current_scale=[-100,100]) return img
Example #17
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def to_light(img, new_dims, new_scale, interp_order=1 ): """ Turn an image into lightness Args: im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns: a lightness version of the original image """ img = skimage.img_as_float( img ) img = resize_image( img, new_dims, interp_order ) img = skimage.color.rgb2lab(img)[:,:,0] img = rescale_image( img, new_scale, current_scale=[0,100]) return np.expand_dims(img,2)
Example #18
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def to_light_low_sat(img, new_dims, new_scale, interp_order=1 ): """ Turn an image into lightness Args: im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns: a lightness version of the original image """ img = skimage.img_as_float( img ) img = np.clip(img, 0.2, 0.8) img = resize_image( img, new_dims, interp_order ) img = skimage.color.rgb2lab(img)[:,:,0] img = rescale_image( img, new_scale, current_scale=[0,100]) return np.expand_dims(img,2)
Example #19
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def resize_rescale_image_gaussian_blur(img, new_dims, new_scale, interp_order=1, blur_strength=4, current_scale=None, no_clip=False): """ Resize an image array with interpolation, and rescale to be between Parameters ---------- im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns ------- im : resized ndarray with shape (new_dims[0], new_dims[1], K) """ img = skimage.img_as_float( img ) img = resize_image( img, new_dims, interp_order ) img = rescale_image( img, new_scale, current_scale=current_scale, no_clip=True ) blurred = gaussian_filter(img, sigma=blur_strength) if not no_clip: min_val, max_val = new_scale np.clip(blurred, min_val, max_val, out=blurred) return blurred
Example #20
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def resize_rescale_image(img, new_dims, new_scale, interp_order=1, current_scale=None, no_clip=False): """ Resize an image array with interpolation, and rescale to be between Parameters ---------- im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns ------- im : resized ndarray with shape (new_dims[0], new_dims[1], K) """ img = skimage.img_as_float( img ) img = resize_image( img, new_dims, interp_order ) img = rescale_image( img, new_scale, current_scale=current_scale, no_clip=no_clip ) return img
Example #21
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def resize_rescale_image_low_sat_2(img, new_dims, new_scale, interp_order=1, current_scale=None, no_clip=False): """ Resize an image array with interpolation, and rescale to be between Parameters ---------- im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns ------- im : resized ndarray with shape (new_dims[0], new_dims[1], K) """ img = skimage.img_as_float( img ) img = resize_image( img, new_dims, interp_order ) img = np.clip(img, 0.2, 0.8) # low_sat_scale = [0.05, 0.95] # img = rescale_image( img, low_sat_scale, current_scale=current_scale, no_clip=no_clip ) img = rescale_image( img, new_scale, current_scale=current_scale, no_clip=no_clip ) return img
Example #22
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def resize_rescale_imagenet(img, new_dims, interp_order=1, current_scale=None, no_clip=False): """ Resize an image array with interpolation, and rescale to be between Parameters ---------- im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns ------- im : resized ndarray with shape (new_dims[0], new_dims[1], K) """ img = skimage.img_as_float( img ) img = resize_image( img, new_dims, interp_order ) #img = rescale_image( img, new_scale, current_scale=current_scale, no_clip=no_clip ) img = img[:,:,[2,1,0]] * 255. root = '/home/ubuntu/task-taxonomy-331b/lib/data' #img = img - np.load('{}/mean_image.npy'.format(root)) mean_bgr = [103.062623801, 115.902882574, 123.151630838] img = img - mean_bgr return img
Example #23
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def load_scaled_image( filename, color=True ): """ Load an image converting from grayscale or alpha as needed. From KChen Args: filename : string color : boolean flag for color format. True (default) loads as RGB while False loads as intensity (if image is already grayscale). Returns image : an image with type np.float32 in range [0, 1] of size (H x W x 3) in RGB or of size (H x W x 1) in grayscale. By kchen """ img = skimage.img_as_float(skimage.io.imread(filename, as_grey=not color)).astype(np.float32) if img.ndim == 2: img = img[:, :, np.newaxis] if color: img = np.tile(img, (1, 1, 3)) elif img.shape[2] == 4: img = img[:, :, :3] return img
Example #24
Source File: core.py From midlevel-reps with MIT License | 6 votes |
def resize_rescale_image(img, new_dims, new_scale, interp_order=1, current_scale=None, no_clip=False): """ Resize an image array with interpolation, and rescale to be between Parameters ---------- im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns ------- im : resized ndarray with shape (new_dims[0], new_dims[1], K) """ img = skimage.img_as_float( img ) img = resize_image( img, new_dims, interp_order ) img = rescale_image( img, new_scale, current_scale=current_scale, no_clip=no_clip ) return img
Example #25
Source File: dataset.py From tanda with MIT License | 6 votes |
def load_cifar10_batch(fpath, one_hot=True, as_float=True): with open(fpath, 'rb') as f: # https://stackoverflow.com/questions/11305790 if six.PY3: data = cPickle.load(f, encoding='latin-1') else: data = cPickle.load(f) X = np.copy(data['data']).reshape(-1, 32*32, 3, order='F') X = X.reshape(-1, 32, 32, 3) Y = np.array(data['labels']) # Convert labels to one hot if one_hot: Y = to_one_hot(Y) # CONVERT TO FLOAT [0,1] TYPE HERE to be consistent with skimage TFs!!! # See: http://scikit-image.org/docs/dev/user_guide/data_types.html if as_float: X = img_as_float(X) return X, Y
Example #26
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def to_light_low_sat(img, new_dims, new_scale, interp_order=1 ): """ Turn an image into lightness Args: im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. new_scale : (min, max) tuple of new scale. interp_order : interpolation order, default is linear. Returns: a lightness version of the original image """ img = skimage.img_as_float( img ) img = np.clip(img, 0.2, 0.8) img = resize_image( img, new_dims, interp_order ) img = skimage.color.rgb2lab(img)[:,:,0] img = rescale_image( img, new_scale, current_scale=[0,100]) return np.expand_dims(img,2)
Example #27
Source File: tf_eval.py From 3d-dl with MIT License | 5 votes |
def adaptive_equalize(img): # Adaptive Equalization img = img_as_float(img) img_adapteq = exposure.equalize_adapthist(img, clip_limit=0.05) return img_as_ubyte(img_adapteq)
Example #28
Source File: core.py From midlevel-reps with MIT License | 5 votes |
def resize_image(im, new_dims, interp_order=1): """ Resize an image array with interpolation. Parameters ---------- im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. interp_order : interpolation order, default is linear. Returns ------- im : resized ndarray with shape (new_dims[0], new_dims[1], K) By kchen @ https://github.com/kchen92/joint-representation/blob/24b30ca6963d2ec99618af379c1e05e1f7026710/lib/data/input_pipeline_feed_dict.py """ if type(im) == PIL.PngImagePlugin.PngImageFile: interps = [PIL.Image.NEAREST, PIL.Image.BILINEAR] return skimage.util.img_as_float(im.resize(new_dims, interps[interp_order])) if all( new_dims[i] == im.shape[i] for i in range( len( new_dims ) ) ): resized_im = im #return im.astype(np.float32) elif im.shape[-1] == 1 or im.shape[-1] == 3: # # skimage is fast but only understands {1,3} channel images resized_im = resize(im, new_dims, order=interp_order, preserve_range=True) else: # ndimage interpolates anything but more slowly. scale = tuple(np.array(new_dims, dtype=float) / np.array(im.shape[:2])) resized_im = zoom(im, scale + (1,), order=interp_order) # resized_im = resized_im.astype(np.float32) return resized_im
Example #29
Source File: core.py From midlevel-reps with MIT License | 5 votes |
def rescale_image(im, new_scale=[-1.,1.], current_scale=None, no_clip=False): """ Rescales an image pixel values to target_scale Args: img: A np.float_32 array, assumed between [0,1] new_scale: [min,max] current_scale: If not supplied, it is assumed to be in: [0, 1]: if dtype=float [0, 2^16]: if dtype=uint [0, 255]: if dtype=ubyte Returns: rescaled_image """ # im = im.astype(np.float32) if current_scale is not None: min_val, max_val = current_scale if not no_clip: im = np.clip(im, min_val, max_val) im = im - min_val im /= (max_val - min_val) min_val, max_val = new_scale im *= (max_val - min_val) im += min_val im = skimage.img_as_float(im) return im
Example #30
Source File: ImageEqualization.py From 3d-dl with MIT License | 5 votes |
def plot_img_and_hist(image, axes, bins=256): """Plot an image along with its histogram and cumulative histogram. """ image = img_as_float(image) ax_img, ax_hist = axes ax_cdf = ax_hist.twinx() # Display image ax_img.imshow(image, cmap=plt.cm.gray) ax_img.set_axis_off() ax_img.set_adjustable('box-forced') # Display histogram ax_hist.hist(image.ravel(), bins=bins, histtype='step', color='black') ax_hist.ticklabel_format(axis='y', style='scientific', scilimits=(0, 0)) ax_hist.set_xlabel('Pixel intensity') ax_hist.set_xlim(0, 1) ax_hist.set_yticks([]) # Display cumulative distribution img_cdf, bins = exposure.cumulative_distribution(image, bins) ax_cdf.plot(bins, img_cdf, 'r') ax_cdf.set_yticks([]) return ax_img, ax_hist, ax_cdf # Load an example image