Python skimage.io() Examples
The following are 30
code examples of skimage.io().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
skimage
, or try the search function
.
Example #1
Source File: classify_demo.py From 12306-captcha with Apache License 2.0 | 6 votes |
def train_main(): path_dir = '/home/ruifengshan/github/12306-captcha/data/download/' img_names = filter(lambda s: not s.startswith("."), os.listdir(path_dir + '/all')) for img_name in img_names: im = cut_image.read_image(os.path.join(path_dir + '/all', img_name)) if im is None: print "该图片{ %s }处理异常: " % img_name continue # 转为灰度图 list_text = judge_words(cut_image.get_text(cv2.cvtColor(im, cv2.COLOR_BGR2GRAY))) print "文字部分的内容:" for text in list_text: print text judge_image(cut_image.get_image(im), list_text) skimage.io.imshow(im)
Example #2
Source File: image_processing.py From text-to-image with MIT License | 6 votes |
def load_image_array(image_file, image_size): img = skimage.io.imread(image_file) # GRAYSCALE if len(img.shape) == 2: img_new = np.ndarray( (img.shape[0], img.shape[1], 3), dtype = 'uint8') img_new[:,:,0] = img img_new[:,:,1] = img img_new[:,:,2] = img img = img_new img_resized = skimage.transform.resize(img, (image_size, image_size)) # FLIP HORIZONTAL WIRH A PROBABILITY 0.5 if random.random() > 0.5: img_resized = np.fliplr(img_resized) return img_resized.astype('float32')
Example #3
Source File: image_processing.py From text-to-image with MIT License | 6 votes |
def load_image_array(image_file, image_size): img = skimage.io.imread(image_file) # GRAYSCALE if len(img.shape) == 2: img_new = np.ndarray( (img.shape[0], img.shape[1], 3), dtype = 'uint8') img_new[:,:,0] = img img_new[:,:,1] = img img_new[:,:,2] = img img = img_new img_resized = skimage.transform.resize(img, (image_size, image_size)) # FLIP HORIZONTAL WIRH A PROBABILITY 0.5 if random.random() > 0.5: img_resized = np.fliplr(img_resized) return img_resized.astype('float32')
Example #4
Source File: save_result.py From DenseMatchingBenchmark with MIT License | 6 votes |
def __call__(self, result, out_dir, image_name): result_tool = ShowResultTool() result = result_tool(result, color_map='gray', bins=100) if 'GrayDisparity' in result.keys(): grayEstDisp = result['GrayDisparity'] gray_save_path = osp.join(out_dir, 'disp_0') mkdir_or_exist(gray_save_path) skimage.io.imsave(osp.join(gray_save_path, image_name), (grayEstDisp * 256).astype('uint16')) if 'ColorDisparity' in result.keys(): colorEstDisp = result['ColorDisparity'] color_save_path = osp.join(out_dir, 'color_disp') mkdir_or_exist(color_save_path) plt.imsave(osp.join(color_save_path, image_name), colorEstDisp, cmap=plt.cm.hot) if 'GroupColor' in result.keys(): group_save_path = os.path.join(out_dir, 'group_disp') mkdir_or_exist(group_save_path) plt.imsave(osp.join(group_save_path, image_name), result['GroupColor'], cmap=plt.cm.hot) if 'ColorConfidence' in result.keys(): conf_save_path = os.path.join(out_dir, 'confidence') mkdir_or_exist(conf_save_path) plt.imsave(osp.join(conf_save_path, image_name), result['ColorConfidence'])
Example #5
Source File: save_result.py From DenseMatchingBenchmark with MIT License | 6 votes |
def __call__(self, result, out_dir, image_name): result_tool = ShowResultTool() result = result_tool(result) if 'GrayDisparity' in result.keys(): grayEstDisp = result['GrayDisparity'] gray_save_path = osp.join(out_dir, 'flow_0') mkdir_or_exist(gray_save_path) skimage.io.imsave(osp.join(gray_save_path, image_name), (grayEstDisp * 256).astype('uint16')) if 'ColorDisparity' in result.keys(): colorEstDisp = result['ColorDisparity'] color_save_path = osp.join(out_dir, 'color_disp') mkdir_or_exist(color_save_path) plt.imsave(osp.join(color_save_path, image_name), colorEstDisp, cmap=plt.cm.hot) if 'GroupColor' in result.keys(): group_save_path = os.path.join(out_dir, 'group_flow') mkdir_or_exist(group_save_path) plt.imsave(osp.join(group_save_path, image_name), result['GroupColor'], cmap=plt.cm.hot)
Example #6
Source File: helpers.py From Feed-Forward-Style-Transfer with MIT License | 6 votes |
def load_img(path): """Returns a numpy array of an image specified by its path. Args: path: string representing the file path of the image to load Returns: resized_img: numpy array representing the loaded RGB image shape: the image shape """ # Load image [height, width, depth] img = skimage.io.imread(path) / 255.0 assert (0 <= img).all() and (img <= 1.0).all() # Crop image from center short_edge = min(img.shape[:2]) yy = int((img.shape[0] - short_edge) / 2) xx = int((img.shape[1] - short_edge) / 2) shape = list(img.shape) crop_img = img[yy: yy + short_edge, xx: xx + short_edge] resized_img = skimage.transform.resize(crop_img, (shape[0], shape[1])) return resized_img, shape
Example #7
Source File: image_processing.py From TAC-GAN with GNU General Public License v3.0 | 6 votes |
def load_image_array_flowers(image_file, image_size): img = skimage.io.imread(image_file) # GRAYSCALE if len(img.shape) == 2: img_new = np.ndarray( (img.shape[0], img.shape[1], 3), dtype = 'uint8') img_new[:,:,0] = img img_new[:,:,1] = img img_new[:,:,2] = img img = img_new img_resized = skimage.transform.resize(img, (image_size, image_size)) # FLIP HORIZONTAL WIRH A PROBABILITY 0.5 if random.random() > 0.5: img_resized = np.fliplr(img_resized) return img_resized.astype('float32')
Example #8
Source File: qc.py From spinalcordtoolbox with MIT License | 6 votes |
def _update_html_assets(self, json_data): """Update the html file and assets""" assets_path = os.path.join(os.path.dirname(__file__), 'assets') dest_path = self.qc_params.root_folder with io.open(os.path.join(assets_path, 'index.html')) as template_index: template = Template(template_index.read()) output = template.substitute(sct_json_data=json.dumps(json_data)) io.open(os.path.join(dest_path, 'index.html'), 'w').write(output) for path in ['css', 'js', 'imgs', 'fonts']: src_path = os.path.join(assets_path, '_assets', path) dest_full_path = os.path.join(dest_path, '_assets', path) if not os.path.exists(dest_full_path): os.makedirs(dest_full_path, exist_ok = True) for file_ in os.listdir(src_path): if not os.path.isfile(os.path.join(dest_full_path, file_)): sct.copy(os.path.join(src_path, file_), dest_full_path)
Example #9
Source File: visualClef.py From Deep-Plant with BSD 3-Clause "New" or "Revised" License | 6 votes |
def crop_image(self, x, target_height=224, target_width=224): image = skimage.img_as_float(skimage.io.imread(x)).astype(np.float32) if len(image.shape) == 2: image = np.tile(image[:,:,None], 3) elif len(image.shape) == 4: image = image[:,:,:,0] height, width, rgb = image.shape if width == height: resized_image = cv2.resize(image, (target_height,target_width)) elif height < width: resized_image = cv2.resize(image, (int(width * float(target_height)/height), target_width)) cropping_length = int((resized_image.shape[1] - target_height) / 2) resized_image = resized_image[:,cropping_length:resized_image.shape[1] - cropping_length] else: resized_image = cv2.resize(image, (target_height, int(height * float(target_width) / width))) cropping_length = int((resized_image.shape[0] - target_width) / 2) resized_image = resized_image[cropping_length:resized_image.shape[0] - cropping_length,:] return cv2.resize(resized_image, (target_height, target_width)) ####### Network Parameters ########
Example #10
Source File: dataSampling.py From adascan-public with GNU General Public License v3.0 | 6 votes |
def flowList(xFileNames, yFileNames): ''' (x/y)fileNames: List of the fileNames in order to get the flows from ''' frameList = [] if (len(xFileNames) != len(yFileNames)): print 'XFILE!=YFILE ERROR: In', xFileNames[0] for i in range(0, min(len(xFileNames), len(yFileNames))): imgX = io.imread(xFileNames[i]) imgY = io.imread(yFileNames[i]) frameList.append(np.dstack((imgX, imgY))) frameList = np.array(frameList) return frameList
Example #11
Source File: art.py From neural-art with MIT License | 6 votes |
def create_transformer(self): """ Create the preprocessor and deprocessor using the default settings for the VGG-19 network. """ # Give transformer necessary imput shape. Should be specified from # argparse arguments when creating the net transformer = caffe.io.Transformer( {'data': self.net.blobs['data'].data.shape} ) # Order of the channels in the input data (not sure why necessary) transformer.set_transpose('data', (2, 0, 1)) # Use BGR rather than RGB transformer.set_channel_swap('data', (2, 1, 0)) # Subtract mean pixel transformer.set_mean('data', MEAN_PIXEL) # Use 8bit image values transformer.set_raw_scale('data', 255) return transformer
Example #12
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def load_scaled_image( filename, color=True ): """ Load an image converting from grayscale or alpha as needed. From KChen Args: filename : string color : boolean flag for color format. True (default) loads as RGB while False loads as intensity (if image is already grayscale). Returns image : an image with type np.float32 in range [0, 1] of size (H x W x 3) in RGB or of size (H x W x 1) in grayscale. By kchen """ img = skimage.img_as_float(skimage.io.imread(filename, as_grey=not color)).astype(np.float32) if img.ndim == 2: img = img[:, :, np.newaxis] if color: img = np.tile(img, (1, 1, 3)) elif img.shape[2] == 4: img = img[:, :, :3] return img
Example #13
Source File: load_ops.py From taskonomy with MIT License | 6 votes |
def load_scaled_image( filename, color=True ): """ Load an image converting from grayscale or alpha as needed. From KChen Args: filename : string color : boolean flag for color format. True (default) loads as RGB while False loads as intensity (if image is already grayscale). Returns image : an image with type np.float32 in range [0, 1] of size (H x W x 3) in RGB or of size (H x W x 1) in grayscale. By kchen """ img = skimage.img_as_float(skimage.io.imread(filename, as_grey=not color)).astype(np.float32) if img.ndim == 2: img = img[:, :, np.newaxis] if color: img = np.tile(img, (1, 1, 3)) elif img.shape[2] == 4: img = img[:, :, :3] return img
Example #14
Source File: art.py From neural-art with MIT License | 6 votes |
def set_content_target(self, img): """ Create content representation of image and set as the content target. """ # XXX: Assume only one content layer cl = CONTENT_LAYERS[0] contenti = caffe.io.load_image(img) # Resize image, set net and transformer shapes accordingly scaled = self.resize_image(contenti) self.resize_caffes(scaled) contenti_pp = self.transformer.preprocess('data', scaled) self.net.blobs['data'].data[...] = contenti_pp self.net.forward() self.content_target = self.net.blobs[cl].data[0].copy() # Get contenti_pp (after transformer) self.content_target = ( np.reshape( self.content_target, (self.content_target.shape[0], self.content_target.shape[1] * self.content_target.shape[2])) )
Example #15
Source File: utils.py From Texture-Synthesis with MIT License | 6 votes |
def load_image2(path, height=None, width=None): # Load image img = skimage.io.imread(path) / 255.0 if height is not None and width is not None: ny = height nx = width elif height is not None: ny = height nx = img.shape[1] * ny / img.shape[0] elif width is not None: nx = width ny = img.shape[0] * nx / img.shape[1] else: ny = img.shape[0] nx = img.shape[1] return skimage.transform.resize(img, (ny, nx)) # Render the generated image given a tensorflow session and a variable image (x)
Example #16
Source File: image.py From deepdish with BSD 3-Clause "New" or "Revised" License | 6 votes |
def load(path, dtype=np.float64): """ Loads an image from file. Parameters ---------- path : str Path to image file. dtype : np.dtype Defaults to ``np.float64``, which means the image will be returned as a float with values between 0 and 1. If ``np.uint8`` is specified, the values will be between 0 and 255 and no conversion cost will be incurred. """ _import_skimage() import skimage.io im = skimage.io.imread(path) if dtype == np.uint8: return im elif dtype in {np.float16, np.float32, np.float64}: return im.astype(dtype) / 255 else: raise ValueError('Unsupported dtype')
Example #17
Source File: utils.py From Texture-Synthesis with MIT License | 6 votes |
def load_image(path): # Load image [height, width, depth] img = skimage.io.imread(path) / 255.0 assert (0 <= img).all() and (img <= 1.0).all() # Crop image from center short_edge = min(img.shape[:2]) yy = int((img.shape[0] - short_edge) / 2) xx = int((img.shape[1] - short_edge) / 2) shape = list(img.shape) crop_img = img[yy: yy + short_edge, xx: xx + short_edge] resized_img = skimage.transform.resize(crop_img, (shape[0], shape[1])) return resized_img, shape # Return a resized numpy array of an image specified by its path
Example #18
Source File: dataloader.py From pytorch-retinanet with Apache License 2.0 | 5 votes |
def load_image(self, image_index): img = skimage.io.imread(self.image_names[image_index]) if len(img.shape) == 2: img = skimage.color.gray2rgb(img) return img.astype(np.float32)/255.0
Example #19
Source File: image.py From hdrnet with Apache License 2.0 | 5 votes |
def imread(path): return skimage.io.imread(path)
Example #20
Source File: trainLoaderN.py From DeepLiDAR with MIT License | 5 votes |
def input_loader(path): img = skimage.io.imread(path) imgG = skimage.color.rgb2gray(img) img = img.astype(np.float32) normals = img * 1.0 / 127.5 - np.ones_like(img) * 1.0 mask = np.zeros_like(img).astype(np.float32) mask[:, :, 0] = np.where(imgG > 0, 1.0, 0.0) mask[:, :, 1] = np.where(imgG > 0, 1.0, 0.0) mask[:, :, 2] = np.where(imgG > 0, 1.0, 0.0) return normals,mask
Example #21
Source File: trainLoader.py From DeepLiDAR with MIT License | 5 votes |
def sparse_loader(lidar2_path): img2 = skimage.io.imread(lidar2_path) img2 = img2 * 1.0 / 256.0 mask2 = np.where(img2 > 0.0, 1.0, 0.0) lidar2 = np.reshape(img2, [img2.shape[0], img2.shape[1], 1]).astype(np.float32) return lidar2,mask2
Example #22
Source File: trainLoader.py From DeepLiDAR with MIT License | 5 votes |
def input_loader(path): img = skimage.io.imread(path) depth = img *1.0 / 256.0 depth = np.reshape(depth, [img.shape[0], img.shape[1], 1]).astype(np.float32) return depth
Example #23
Source File: trainLoader.py From DeepLiDAR with MIT License | 5 votes |
def default_loader(path): img = skimage.io.imread(path) return img
Example #24
Source File: image_loader.py From CVTron with Apache License 2.0 | 5 votes |
def load_image(path, height, width): img = skimage.io.imread(path) img = img / 255.0 assert (0 <= img).all() and (img <= 1.0).all() short_edge = min(img.shape[:2]) yy = int((img.shape[0] - short_edge) / 2) xx = int((img.shape[1] - short_edge) / 2) crop_img = img[yy:yy + short_edge, xx:xx + short_edge] resized_img = skimage.transform.resize(crop_img, (height, width)) return resized_img
Example #25
Source File: load_ops.py From taskonomy with MIT License | 5 votes |
def segment_pixel_sample_semantic( template, new_dims, num_pixels, domain, mask=None, is_aws=False ): ''' Segmentation Returns: -------- pixels: size num_pixels x 3 numpy array ''' if template.split('/')[-1].isdigit(): template = template.split('/') if template[0] == '': template[0] = os.sep template[-1] = "point_{point_id}_view_{view_id}_domain_{{domain}}.png".format( point_id=template[-2], view_id=template[-1]) template[-2] = '{domain}' template = os.path.join(*template) filename = template.format( domain=domain ) #img = load_raw_image( filename, color=False, is_aws=is_aws ) img = skimage.io.imread( filename ) img = scipy.misc.imresize(img, tuple(new_dims), interp='nearest') #img = resize_image( img, new_dims ) valid_pixels = list(zip(*np.where(np.squeeze(img) != 0))) pixs = random.sample(valid_pixels, num_pixels) pix_segment = [list(i) + [int(img[i[0]][i[1]])] for i in pixs] pix_segment = np.array(pix_segment) return pix_segment
Example #26
Source File: load_ops.py From taskonomy with MIT License | 5 votes |
def segment_pixel_sample_semantic_rebalanced( template, new_dims, num_pixels, domain, mask=None, is_aws=False, root='/home/ubuntu/task-taxonomy-331b' ): ''' Segmentation Returns: -------- pixels: size num_pixels x 3 numpy array ''' if template.split('/')[-1].isdigit(): template = template.split('/') if template[0] == '': template[0] = os.sep template[-1] = "point_{point_id}_view_{view_id}_domain_{{domain}}.png".format( point_id=template[-2], view_id=template[-1]) template[-2] = '{domain}' template = os.path.join(*template) filename = template.format( domain=domain ) #img = load_raw_image( filename, color=False, is_aws=is_aws ) img = skimage.io.imread( filename ) img = scipy.misc.imresize(img, tuple(new_dims), interp='nearest') #img = resize_image( img, new_dims ) valid_pixels = list(zip(*np.where(np.squeeze(img) != 0))) pixs = random.sample(valid_pixels, num_pixels) img[img == 0] == 1 img = img - 1 prior_factor = np.load(os.path.join(root,'lib', 'data', 'semseg_prior_factor.npy')) #pix_segment = [list(i) + [int(img[i[0]][i[1]])] + [prior_factor[int(img[i[0]][i[1]])]/7. ] for i in pixs] pix_segment = [list(i) + [int(img[i[0]][i[1]])] + [1. ] for i in pixs] pix_segment = np.array(pix_segment) return pix_segment
Example #27
Source File: load_ops.py From taskonomy with MIT License | 5 votes |
def semantic_segment( template, new_dims, domain ): ''' Segmentation Returns: -------- pixels: size num_pixels x 3 numpy array ''' if template.split('/')[-1].isdigit(): template = template.split('/') if template[0] == '': template[0] = os.sep template[-1] = "point_{point_id}_view_{view_id}_domain_{{domain}}.png".format( point_id=template[-2], view_id=template[-1]) template[-2] = '{domain}' template = os.path.join(*template) filename = template.format( domain=domain ) if not os.path.isfile(filename): return np.zeros(tuple(new_dims)), np.zeros(tuple(new_dims)) if os.stat(filename).st_size < 100: return np.zeros(tuple(new_dims)), np.zeros(tuple(new_dims)) img = skimage.io.imread( filename ) img = scipy.misc.imresize(img, tuple(new_dims), interp='nearest') mask = img > 0.1 mask = mask.astype(float) img[img == 0] = 1 img = img - 1 return img, mask
Example #28
Source File: load_ops.py From taskonomy with MIT License | 5 votes |
def semantic_segment_rebalanced_linear_inverse( template, new_dims, domain, root='/home/ubuntu/task-taxonomy-331b' ): ''' Segmentation Returns: -------- pixels: size num_pixels x 3 numpy array ''' if template.split('/')[-1].isdigit(): template = template.split('/') if template[0] == '': template[0] = os.sep template[-1] = "point_{point_id}_view_{view_id}_domain_{{domain}}.png".format( point_id=template[-2], view_id=template[-1]) template[-2] = '{domain}' template = os.path.join(*template) filename = template.format( domain=domain ) if not os.path.isfile(filename): return np.zeros(tuple(new_dims)), np.zeros(tuple(new_dims)) if os.stat(filename).st_size < 100: return np.zeros(tuple(new_dims)), np.zeros(tuple(new_dims)) img = skimage.io.imread( filename ) img = scipy.misc.imresize(img, tuple(new_dims), interp='nearest') mask = img > 0.1 mask = mask.astype(float) img[img == 0] = 1 img = img - 1 prior_factor = np.load(os.path.join(root,'lib', 'data', 'semseg_avg_inv.npy')) rebalance = prior_factor[img] mask = mask * rebalance return img, mask
Example #29
Source File: load_ops.py From taskonomy with MIT License | 5 votes |
def semantic_segment_rebalanced( template, new_dims, domain, root='/home/ubuntu/task-taxonomy-331b' ): ''' Segmentation Returns: -------- pixels: size num_pixels x 3 numpy array ''' if template.split('/')[-1].isdigit(): template = template.split('/') if template[0] == '': template[0] = os.sep template[-1] = "point_{point_id}_view_{view_id}_domain_{{domain}}.png".format( point_id=template[-2], view_id=template[-1]) template[-2] = '{domain}' template = os.path.join(*template) filename = template.format( domain=domain ) if not os.path.isfile(filename): return np.zeros(tuple(new_dims)), np.zeros(tuple(new_dims)) if os.stat(filename).st_size < 100: return np.zeros(tuple(new_dims)), np.zeros(tuple(new_dims)) img = skimage.io.imread( filename ) img = scipy.misc.imresize(img, tuple(new_dims), interp='nearest') mask = img > 0.1 mask = mask.astype(float) img[img == 0] = 1 img = img - 1 prior_factor = np.load(os.path.join(root,'lib', 'data', 'semseg_prior_factor.npy')) rebalance = prior_factor[img] mask = mask * rebalance return img, mask
Example #30
Source File: vgg19.py From InsightFace_TF with MIT License | 5 votes |
def load_image(path): # load image img = skimage.io.imread(path) img = img / 255.0 if ((0 <= img).all() and (img <= 1.0).all()) is False: raise Exception("image value should be [0, 1]") # print "Original Image Shape: ", img.shape # we crop image from center short_edge = min(img.shape[:2]) yy = int((img.shape[0] - short_edge) / 2) xx = int((img.shape[1] - short_edge) / 2) crop_img = img[yy:yy + short_edge, xx:xx + short_edge] # resize to 224, 224 resized_img = skimage.transform.resize(crop_img, (224, 224)) return resized_img