Python tensorflow.examples.tutorials.mnist.input_data.read_data_sets() Examples
The following are 30
code examples of tensorflow.examples.tutorials.mnist.input_data.read_data_sets().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.examples.tutorials.mnist.input_data
, or try the search function
.
Example #1
Source File: prepro.py From dl-uncertainty with MIT License | 6 votes |
def main(): mnist = input_data.read_data_sets(train_dir='mnist') train = {'X': resize_images(mnist.train.images.reshape(-1, 28, 28)), 'y': mnist.train.labels} test = {'X': resize_images(mnist.test.images.reshape(-1, 28, 28)), 'y': mnist.test.labels} #~ train = {'X': mnist.train.images, #~ 'y': mnist.train.labels} #~ test = {'X': mnist.test.images, #~ 'y': mnist.test.labels} save_pickle(train, 'mnist/train.pkl') save_pickle(test, 'mnist/test.pkl')
Example #2
Source File: download_and_process_mnist.py From adversarial-feature-augmentation with MIT License | 6 votes |
def download_and_process_mnist(): if not os.path.exists('./data/mnist'): os.makedirs('./data/mnist') mnist = input_data.read_data_sets(train_dir='./data/mnist') train = {'X': resize_images(mnist.train.images.reshape(-1, 28, 28)), 'y': mnist.train.labels} test = {'X': resize_images(mnist.test.images.reshape(-1, 28, 28)), 'y': mnist.test.labels} with open('./data/mnist/train.pkl','w') as f: cPickle.dump(train,f,cPickle.HIGHEST_PROTOCOL) with open('./data/mnist/test.pkl','w') as f: cPickle.dump(test,f,cPickle.HIGHEST_PROTOCOL)
Example #3
Source File: task.py From cloudml-samples with Apache License 2.0 | 6 votes |
def do_eval(sess, eval_correct, images_placeholder, labels_placeholder, data_set): """Runs one evaluation against the full epoch of data. Args: sess: The session in which the model has been trained. eval_correct: The Tensor that returns the number of correct predictions. images_placeholder: The images placeholder. labels_placeholder: The labels placeholder. data_set: The set of images and labels to evaluate, from input_data.read_data_sets(). """ # And run one epoch of eval. true_count = 0 # Counts the number of correct predictions. steps_per_epoch = data_set.num_examples // FLAGS.batch_size num_examples = steps_per_epoch * FLAGS.batch_size for step in xrange(steps_per_epoch): feed_dict = fill_feed_dict(data_set, images_placeholder, labels_placeholder) true_count += sess.run(eval_correct, feed_dict=feed_dict) precision = true_count / num_examples print(' Num examples: %d Num correct: %d Precision @ 1: %0.04f' % (num_examples, true_count, precision))
Example #4
Source File: mnist_data.py From forge with GNU General Public License v3.0 | 6 votes |
def load(config, **unused_kwargs): del unused_kwargs if not os.path.exists(config.data_folder): os.makedirs(config.data_folder) dataset = input_data.read_data_sets(config.data_folder) train_data = {'imgs': dataset.train.images, 'labels': dataset.train.labels} valid_data = {'imgs': dataset.validation.images, 'labels': dataset.validation.labels} # This function turns a dictionary of numpy.ndarrays into tensors. train_tensors = tensors_from_data(train_data, config.batch_size, shuffle=True) valid_tensors = tensors_from_data(valid_data, config.batch_size, shuffle=False) data_dict = AttrDict( train_img=train_tensors['imgs'], valid_img=valid_tensors['imgs'], train_label=train_tensors['labels'], valid_label=valid_tensors['labels'], ) return data_dict
Example #5
Source File: prepro.py From minimal-entropy-correlation-alignment with MIT License | 6 votes |
def main(): mnist = input_data.read_data_sets(train_dir='mnist') train = {'X': resize_images(mnist.train.images.reshape(-1, 28, 28)), 'y': mnist.train.labels} test = {'X': resize_images(mnist.test.images.reshape(-1, 28, 28)), 'y': mnist.test.labels} #~ train = {'X': mnist.train.images, #~ 'y': mnist.train.labels} #~ test = {'X': mnist.test.images, #~ 'y': mnist.test.labels} save_pickle(train, 'mnist/train.pkl') save_pickle(test, 'mnist/test.pkl')
Example #6
Source File: mnist_data.py From forge with GNU General Public License v3.0 | 6 votes |
def load(config, **unused_kwargs): del unused_kwargs if not os.path.exists(config.data_folder): os.makedirs(config.data_folder) dataset = input_data.read_data_sets(config.data_folder) train_data = {'imgs': dataset.train.images, 'labels': dataset.train.labels} valid_data = {'imgs': dataset.validation.images, 'labels': dataset.validation.labels} train_tensors = tensors_from_data(train_data, config.batch_size, shuffle=True) valid_tensors = tensors_from_data(valid_data, config.batch_size, shuffle=False) data_dict = AttrDict( train_img=train_tensors['imgs'], valid_img=valid_tensors['imgs'], train_label=train_tensors['labels'], valid_label=valid_tensors['labels'], ) return data_dict
Example #7
Source File: mnist.py From deep_image_model with Apache License 2.0 | 6 votes |
def fill_feed_dict(data_set, images_pl, labels_pl, batch_size): """Fills the feed_dict for training the given step. Args: data_set: The set of images and labels, from input_data.read_data_sets() images_pl: The images placeholder, from placeholder_inputs(). labels_pl: The labels placeholder, from placeholder_inputs(). batch_size: Batch size of data to feed. Returns: feed_dict: The feed dictionary mapping from placeholders to values. """ # Create the feed_dict for the placeholders filled with the next # `batch size ` examples. images_feed, labels_feed = data_set.next_batch(batch_size, FLAGS.fake_data) feed_dict = { images_pl: images_feed, labels_pl: labels_feed, } return feed_dict
Example #8
Source File: AGNModel.py From Machine-Learning-Study-Notes with Apache License 2.0 | 6 votes |
def load_model(self): tf.train.Saver().restore(self._sess, tf.train.latest_checkpoint("/home/ilmare/Desktop/FaceReplace/model/")) mnist = input_data.read_data_sets("/home/ilmare/dataSet/mnist", one_hot=True) source = np.reshape(mnist.train.images[0], [1, 784]) dest = self.reconstrct(source) source = np.reshape(source, [28, 28]) dest = np.reshape(dest, [28, 28]) print(source.shape, dest.shape) # fig = plt.figure("test") # ax = fig.add_subplot(121) # ax.imshow(source) # bx = fig.add_subplot(122) # bx.imshow(dest) # plt.show() cv2.imshow("test", dest) cv2.waitKey(0)
Example #9
Source File: mnist.py From lightnn with Apache License 2.0 | 6 votes |
def model_mlp_mnist(): """test MLP with MNIST data and Model """ from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('/tmp/data', one_hot=True) training_data = np.array([image.flatten() for image in mnist.train.images]) training_label = mnist.train.labels valid_data = np.array([image.flatten() for image in mnist.validation.images]) valid_label = mnist.validation.labels input_dim = training_data.shape[1] label_size = training_label.shape[1] dense_1 = Dense(300, input_dim=input_dim, activator=None) dense_2 = Activation('selu')(dense_1) dropout_1 = Dropout(0.2)(dense_2) softmax_1 = Softmax(label_size)(dropout_1) model = Model(dense_1, softmax_1) model.compile('CCE', optimizer=Adadelta()) model.fit(training_data, training_label, validation_data=(valid_data, valid_label))
Example #10
Source File: mnist.py From lightnn with Apache License 2.0 | 6 votes |
def cnn_mnist(): """test CNN with MNIST data and Sequential """ from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('/tmp/data', one_hot=True) training_data = np.array([image.reshape(28, 28, 1) for image in mnist.train.images]) training_label = mnist.train.labels valid_data = np.array([image.reshape(28, 28, 1) for image in mnist.validation.images]) valid_label = mnist.validation.labels label_size = training_label.shape[1] model =Sequential() model.add(Input(batch_input_shape=(None, 28, 28, 1))) model.add(Conv2d((3, 3), 1, activator='selu')) model.add(AvgPooling((2, 2), stride=2)) model.add(Conv2d((4, 4), 2, activator='selu')) model.add(AvgPooling((2, 2), stride=2)) model.add(Flatten()) model.add(Softmax(label_size)) model.compile('CCE', optimizer=SGD(lr=1e-2)) model.fit(training_data, training_label, validation_data=(valid_data, valid_label), verbose=2)
Example #11
Source File: mnist.py From lightnn with Apache License 2.0 | 6 votes |
def mlp_mnist(): """test MLP with MNIST data and Sequential """ from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('/tmp/data', one_hot=True) training_data = np.array([image.flatten() for image in mnist.train.images]) training_label = mnist.train.labels valid_data = np.array([image.flatten() for image in mnist.validation.images]) valid_label = mnist.validation.labels input_dim = training_data.shape[1] label_size = training_label.shape[1] model = Sequential() model.add(Input(input_shape=(input_dim, ))) model.add(Dense(300, activator='selu')) model.add(Dropout(0.2)) model.add(Softmax(label_size)) model.compile('CCE', optimizer=SGD()) model.fit(training_data, training_label, validation_data=(valid_data, valid_label))
Example #12
Source File: mnist_data.py From gated-pixel-cnn with Apache License 2.0 | 6 votes |
def get_dataset(data_dir, preprocess_fcn=None, dtype=tf.float32, reshape=True): """Construct a DataSet. `dtype` can be either `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into `[0, 1]`. `reshape` Convert shape from [num examples, rows, columns, depth] to [num examples, rows*columns] (assuming depth == 1) """ from tensorflow.examples.tutorials.mnist import input_data datasets = input_data.read_data_sets(data_dir, dtype=dtype, reshape=reshape) if preprocess_fcn is not None: train = _preprocess_dataset(datasets.train, preprocess_fcn, dtype, reshape) validation = _preprocess_dataset(datasets.validation, preprocess_fcn, dtype, reshape) test = _preprocess_dataset(datasets.test, preprocess_fcn, dtype, reshape) else: train = datasets.train validation = datasets.validation test = datasets.test height, width, channels = 28, 28, 1 return Datasets(train, validation, test, height, width, channels)
Example #13
Source File: autoencoder_t-sne.py From Autoencoder-TensorBoard-t-SNE with MIT License | 6 votes |
def generate_metadata_file(): # Import data mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) # The ".tsv" file will contain one number per row to point to the good label # for each test example in the dataset. # For example, labels could be saved as plain text on those lines if needed. # In our case we have only 10 possible different labels, so their # "uniqueness" is recognised to later associate colors automatically in # TensorBoard. def save_metadata(file): with open(file, 'w') as f: for i in range(NB_TEST_DATA): c = np.nonzero(mnist.test.labels[::1])[1:][0][i] f.write('{}\n'.format(c)) save_metadata(FLAGS.log_dir + '/projector/metadata.tsv')
Example #14
Source File: mnist_env.py From HardRLWithYoutube with MIT License | 6 votes |
def __init__( self, seed=0, episode_len=None, no_images=None ): from tensorflow.examples.tutorials.mnist import input_data # we could use temporary directory for this with a context manager and # TemporaryDirecotry, but then each test that uses mnist would re-download the data # this way the data is not cleaned up, but we only download it once per machine mnist_path = osp.join(tempfile.gettempdir(), 'MNIST_data') with filelock.FileLock(mnist_path + '.lock'): self.mnist = input_data.read_data_sets(mnist_path) self.np_random = np.random.RandomState() self.np_random.seed(seed) self.observation_space = Box(low=0.0, high=1.0, shape=(28,28,1)) self.action_space = Discrete(10) self.episode_len = episode_len self.time = 0 self.no_images = no_images self.train_mode() self.reset()
Example #15
Source File: tf_mnist_example.py From telegrad with GNU General Public License v3.0 | 6 votes |
def fill_feed_dict(data_set, images_pl, labels_pl): """Fills the feed_dict for training the given step. A feed_dict takes the form of: feed_dict = { <placeholder>: <tensor of values to be passed for placeholder>, .... } Args: data_set: The set of images and labels, from input_data.read_data_sets() images_pl: The images placeholder, from placeholder_inputs(). labels_pl: The labels placeholder, from placeholder_inputs(). Returns: feed_dict: The feed dictionary mapping from placeholders to values. """ # Create the feed_dict for the placeholders filled with the next # `batch size` examples. images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size, FLAGS.fake_data) feed_dict = { images_pl: images_feed, labels_pl: labels_feed, } return feed_dict
Example #16
Source File: mnist_with_summaries.py From mnist-tensorboard-embeddings with MIT License | 5 votes |
def generate_metadata_file(): # Import data mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True, fake_data=FLAGS.fake_data) def save_metadata(file): with open(file, 'w') as f: # f.write('id\tchar\n') for i in range(FLAGS.max_steps): c = np.nonzero(mnist.test.labels[::1])[1:][0][i] f.write('{}\n'.format(c)) # save metadata file save_metadata(FLAGS.log_dir + '/projector/metadata.tsv')
Example #17
Source File: InceptionNet.py From Machine-Learning-Study-Notes with Apache License 2.0 | 5 votes |
def test(self): mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) count = 0 i = 0 for img, label in zip(mnist.test.images, mnist.test.labels): img = np.reshape(img, [1, 784]) label = np.reshape(label, [1, 10]) pre = self._sess.run(self._pre, feed_dict={self._x: img, self._y: label, self._keep_prob:1.0}) if np.equal(np.argmax(pre, 1), np.argmax(label, 1)): count += 1 i += 1 if i % 100 == 0: print("step: {0:d}/{1:d}, accuracy: {2:.3f}".format(i, len(mnist.test.images), count / i)) print("accuracy: ", (count / i))
Example #18
Source File: InceptionNet.py From Machine-Learning-Study-Notes with Apache License 2.0 | 5 votes |
def train(self): try: # mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # fig = plt.figure("cross-entropy") # mpl.rcParams['xtick.labelsize'] = 8 # mpl.rcParams['ytick.labelsize'] = 8 # ax = fig.add_subplot(111) # ax.grid(True) ac = [] aac = [] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(self._maxIter): # train, label = mnist.train.next_batch(50) train, label = self._imageObject.nextBatch(24) _, accuracy, loss = sess.run([self._train, self._accuracy, self._cross_entry], feed_dict={self._x: train, self._y: label, self._keep_prob: 0.5}) ac.append(accuracy) aac.append(np.mean(np.array(ac))) # ax.plot(np.arange(len(ac)), np.array(ac), linewidth=0.8, color="b") # ax.plot(np.arange(len(aac)), np.array(aac), linewidth=0.8, color="r") # plt.pause(0.1) if i % 10 == 0: print("step {0:d}/{1:d},accuracy: {2:.3f}, loss: {3:.3f}".format(i, self._maxIter, accuracy, loss)) if i % 250 == 0: tf.train.Saver().save(sess, "{0}model".format(save_path), global_step=i) except Exception as e: print(e) finally: fig = plt.figure("cross-entropy") mpl.rcParams['xtick.labelsize'] = 8 mpl.rcParams['ytick.labelsize'] = 8 ax = fig.add_subplot(111) ax.plot(np.arange(len(ac)), np.array(ac), linewidth=0.8, color="b") ax.plot(np.arange(len(aac)), np.array(aac), linewidth=0.8, color="r") plt.show()
Example #19
Source File: SimpleCNN.py From Machine-Learning-Study-Notes with Apache License 2.0 | 5 votes |
def train(self): try: mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) fig = plt.figure("cross-entropy") mpl.rcParams['xtick.labelsize'] = 8 mpl.rcParams['ytick.labelsize'] = 8 ax = fig.add_subplot(111) ax.grid(True) ac = [] aac = [] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(self._maxIter): train, label = mnist.train.next_batch(50) _, accuracy, loss = sess.run([self._train_step, self._accuracy, self._cross_entry], feed_dict={self._x: train, self._y: label, self._keep_prob: 0.5}) ac.append(accuracy) aac.append(np.mean(np.array(ac))) ax.plot(np.arange(len(ac)), np.array(ac), linewidth=0.8, color="b") ax.plot(np.arange(len(aac)), np.array(aac), linewidth=0.8, color="r") plt.pause(0.1) if i % 10 == 0: print("step {0:d}/{1:d},accuracy: {2:.3f}, loss: {3:.3f}".format(i, self._maxIter, accuracy, loss)) if i % 100 == 0: tf.train.Saver().save(sess, "{0}model".format(save_path), global_step=i) except Exception as e: print(e) finally: plt.show()
Example #20
Source File: utils.py From Transforming-Autoencoder-TF with MIT License | 5 votes |
def load_validation_data(): mnist = input_data.read_data_sets('MNIST_data', one_hot=True) return mnist.validation.images
Example #21
Source File: mnist_correctness_test.py From gradient-checkpointing with MIT License | 5 votes |
def train_dataset(data_dir): """Returns a tf.data.Dataset yielding (image, label) pairs for training.""" data = input_data.read_data_sets(data_dir, one_hot=True).train return tf.data.Dataset.from_tensor_slices((data.images, data.labels))
Example #22
Source File: MNIST.py From TensorFlow-VAE with MIT License | 5 votes |
def load_data(): """ Download MNIST data from TensorFlow package """ mnist = input_data.read_data_sets("MNIST_data", one_hot=True) train_data = mnist.train.images test_data = mnist.test.images valid_data = mnist.validation.images train_label = mnist.train.labels test_label = mnist.test.labels valid_label = mnist.validation.labels all_data = [train_data, test_data, valid_data] all_labels = [train_label, test_label, valid_label] return all_data, all_labels
Example #23
Source File: mnist_t-sne.py From mnist-tensorboard-embeddings with MIT License | 5 votes |
def generate_metadata_file(): # Import data mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True, fake_data=FLAGS.fake_data) def save_metadata(file): with open(file, 'w') as f: for i in range(FLAGS.max_steps): c = np.nonzero(mnist.test.labels[::1])[1:][0][i] f.write('{}\n'.format(c)) save_metadata(FLAGS.log_dir + '/projector/metadata.tsv')
Example #24
Source File: mnist_t-sne.py From mnist-tensorboard-embeddings with MIT License | 5 votes |
def generate_embeddings(): # Import data mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True, fake_data=FLAGS.fake_data) sess = tf.InteractiveSession() # Input set for Embedded TensorBoard visualization # Performed with cpu to conserve memory and processing power with tf.device("/cpu:0"): embedding = tf.Variable(tf.stack(mnist.test.images[:FLAGS.max_steps], axis=0), trainable=False, name='embedding') tf.global_variables_initializer().run() saver = tf.train.Saver() writer = tf.summary.FileWriter(FLAGS.log_dir + '/projector', sess.graph) # Add embedding tensorboard visualization. Need tensorflow version # >= 0.12.0RC0 config = projector.ProjectorConfig() embed= config.embeddings.add() embed.tensor_name = 'embedding:0' embed.metadata_path = os.path.join(FLAGS.log_dir + '/projector/metadata.tsv') embed.sprite.image_path = os.path.join(FLAGS.data_dir + '/mnist_10k_sprite.png') # Specify the width and height of a single thumbnail. embed.sprite.single_image_dim.extend([28, 28]) projector.visualize_embeddings(writer, config) saver.save(sess, os.path.join( FLAGS.log_dir, 'projector/a_model.ckpt'), global_step=FLAGS.max_steps)
Example #25
Source File: lshutils.py From Fly-LSH with MIT License | 5 votes |
def __init__(self,name,path='./datasets/'): self.path=path self.name=name.upper() if self.name=='MNIST' or self.name=='FMNIST': self.indim=784 try: self.data=read_data_sets(self.path+self.name) except OSError as err: print(str(err)) raise ValueError('Try again') elif self.name=='CIFAR10': self.indim=(32,32,3) if self.name not in os.listdir(self.path): print('Data not in path') raise ValueError() elif self.name=='GLOVE': self.indim=300 self.data=pickle.load(open(self.path+'glove30k.p','rb')) elif self.name=='SIFT': self.indim=128 self.data=loadmat(self.path+self.name+'/siftvecs.mat')['vecs'] elif self.name=='GIST': self.indim=960 self.data=loadmat(self.path+self.name+'/gistvecs.mat')['vecs'] elif self.name=='LMGIST': self.indim=512 self.data=loadmat(self.path+self.name+'/LabelMe_gist.mat')['gist'] elif self.name=='RANDOM': self.indim=128 self.data=np.random.random(size=(100_000,self.indim)) #np.random.randn(100_000,self.indim)
Example #26
Source File: utils.py From VAE-GMVAE with Apache License 2.0 | 5 votes |
def load_MNIST(): data_path = '../data/MNIST_data' data = input_data.read_data_sets(data_path, one_hot=False) x_train_aux = data.train.images x_test = data.test.images data_dim = data.train.images.shape[1] n_train = data.train.images.shape[0] train_size = int(n_train * 0.8) valid_size = n_train - train_size x_valid, x_train = merge_datasets(x_train_aux, data_dim, train_size, valid_size) print('Data loaded. ', time.localtime().tm_hour, ':', time.localtime().tm_min, 'h') # logs.write('\tData loaded ' + str(time.localtime().tm_hour) +':' + str(time.localtime().tm_min) + 'h\n') x_train = np.reshape(x_train, [-1, 28, 28, 1]) x_valid = np.reshape(x_valid, [-1, 28, 28, 1]) x_test = np.reshape(x_test, [-1, 28, 28, 1]) train_dataset = Dataset(x_train, data.train.labels) valid_dataset = Dataset(x_valid, data.train.labels) test_dataset = Dataset(x_test, data.test.labels) print('Train Data: ', train_dataset.x.shape) print('Valid Data: ', valid_dataset.x.shape) print('Test Data: ', test_dataset.x.shape) return train_dataset, valid_dataset, test_dataset
Example #27
Source File: fully_connected_feed.py From deep_image_model with Apache License 2.0 | 5 votes |
def fill_feed_dict(data_set, images_pl, labels_pl): """Fills the feed_dict for training the given step. A feed_dict takes the form of: feed_dict = { <placeholder>: <tensor of values to be passed for placeholder>, .... } Args: data_set: The set of images and labels, from input_data.read_data_sets() images_pl: The images placeholder, from placeholder_inputs(). labels_pl: The labels placeholder, from placeholder_inputs(). Returns: feed_dict: The feed dictionary mapping from placeholders to values. """ # Create the feed_dict for the placeholders filled with the next # `batch size` examples. images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size, FLAGS.fake_data) feed_dict = { images_pl: images_feed, labels_pl: labels_feed, } return feed_dict
Example #28
Source File: random_forest_mnist.py From deep_image_model with Apache License 2.0 | 5 votes |
def train_and_eval(): """Train and evaluate the model.""" model_dir = tempfile.mkdtemp() if not FLAGS.model_dir else FLAGS.model_dir print('model directory = %s' % model_dir) estimator = build_estimator(model_dir) # TensorForest's loss hook allows training to terminate early if the # forest is no longer growing. early_stopping_rounds = 100 monitor = random_forest.TensorForestLossHook(early_stopping_rounds) mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=False) estimator.fit(x=mnist.train.images, y=mnist.train.labels, batch_size=FLAGS.batch_size, monitors=[monitor]) metric_name = 'accuracy' metric = {metric_name: metric_spec.MetricSpec( eval_metrics.get_metric(metric_name), prediction_key=eval_metrics.get_prediction_key(metric_name))} results = estimator.evaluate(x=mnist.test.images, y=mnist.test.labels, batch_size=FLAGS.batch_size, metrics=metric) for key in sorted(results): print('%s: %s' % (key, results[key]))
Example #29
Source File: fully_connected_feed.py From deep_image_model with Apache License 2.0 | 5 votes |
def do_eval(sess, eval_correct, images_placeholder, labels_placeholder, data_set): """Runs one evaluation against the full epoch of data. Args: sess: The session in which the model has been trained. eval_correct: The Tensor that returns the number of correct predictions. images_placeholder: The images placeholder. labels_placeholder: The labels placeholder. data_set: The set of images and labels to evaluate, from input_data.read_data_sets(). """ # And run one epoch of eval. true_count = 0 # Counts the number of correct predictions. steps_per_epoch = data_set.num_examples // FLAGS.batch_size num_examples = steps_per_epoch * FLAGS.batch_size for step in xrange(steps_per_epoch): feed_dict = fill_feed_dict(data_set, images_placeholder, labels_placeholder) true_count += sess.run(eval_correct, feed_dict=feed_dict) precision = true_count / num_examples print(' Num examples: %d Num correct: %d Precision @ 1: %0.04f' % (num_examples, true_count, precision))
Example #30
Source File: mnist_softmax.py From deep_image_model with Apache License 2.0 | 5 votes |
def main(_): mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) # Create the model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.matmul(x, W) + b # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 10]) # The raw formulation of cross-entropy, # # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)), # reduction_indices=[1])) # # can be numerically unstable. # # So here we use tf.nn.softmax_cross_entropy_with_logits on the raw # outputs of 'y', and then average across the batch. cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y, y_)) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.InteractiveSession() # Train tf.global_variables_initializer().run() for _ in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # Test trained model correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))