Python chainer.cuda.check_cuda_available() Examples
The following are 2
code examples of chainer.cuda.check_cuda_available().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.cuda
, or try the search function
.
Example #1
Source File: convolution_rbm.py From SeRanet with MIT License | 6 votes |
def __init__(self, in_channels, out_channels, ksize, stride=1, real=0, wscale=1.0): super(ConvolutionRBM, self).__init__( conv=L.Convolution2D(in_channels, out_channels, ksize, stride=stride, wscale=wscale), ) # if gpu >= 0: # cuda.check_cuda_available() # xp = cuda.cupy # if gpu >= 0 else np self.conv.add_param("a", in_channels) # dtype=xp.float32 self.conv.a.data.fill(0.) self.in_channels = in_channels self.out_channels = out_channels self.ksize = ksize self.real = real self.rbm_train = False # default value is false
Example #2
Source File: chainer_alex.py From mlimages with MIT License | 5 votes |
def train(epoch=10, batch_size=32, gpu=False): if gpu: cuda.check_cuda_available() xp = cuda.cupy if gpu else np td = TrainingData(LABEL_FILE, img_root=IMAGES_ROOT, image_property=IMAGE_PROP) # make mean image if not os.path.isfile(MEAN_IMAGE_FILE): print("make mean image...") td.make_mean_image(MEAN_IMAGE_FILE) else: td.mean_image_file = MEAN_IMAGE_FILE # train model label_def = LabelingMachine.read_label_def(LABEL_DEF_FILE) model = alex.Alex(len(label_def)) optimizer = optimizers.MomentumSGD(lr=0.01, momentum=0.9) optimizer.setup(model) epoch = epoch batch_size = batch_size print("Now our model is {0} classification task.".format(len(label_def))) print("begin training the model. epoch:{0} batch size:{1}.".format(epoch, batch_size)) if gpu: model.to_gpu() for i in range(epoch): print("epoch {0}/{1}: (learning rate={2})".format(i + 1, epoch, optimizer.lr)) td.shuffle(overwrite=True) for x_batch, y_batch in td.generate_batches(batch_size): x = chainer.Variable(xp.asarray(x_batch)) t = chainer.Variable(xp.asarray(y_batch)) optimizer.update(model, x, t) print("loss: {0}, accuracy: {1}".format(float(model.loss.data), float(model.accuracy.data))) serializers.save_npz(MODEL_FILE, model) optimizer.lr *= 0.97