Python chainer.cuda.ndarray() Examples
The following are 11
code examples of chainer.cuda.ndarray().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.cuda
, or try the search function
.
Example #1
Source File: visualize.py From chainer-visualization with MIT License | 6 votes |
def visualize_layer_activations(model, im, layer_idx): """Compute the activations for each feature map for the given layer for this particular image. Note that the input x should be a mini-batch of size one, i.e. a single image. """ if model._device_id is not None and model._device_id >= 0: # Using GPU im = cuda.cupy.array(im) activations = model.activations(Variable(im), layer_idx) if isinstance(activations, cuda.ndarray): activations = cuda.cupy.asnumpy(activations) # Rescale to [0, 255] activations -= activations.min() activations /= activations.max() activations *= 255 return activations.astype(np.uint8)
Example #2
Source File: train.py From knmt with GNU General Public License v3.0 | 5 votes |
def __call__(self, key, value): key = self.path + key.lstrip('/') if not self.strict and key not in self.npz: return value dataset = None for npz in self.npz_list: try: this_d = npz[key] except KeyError: this_d = npz["updater/model:main/"+key] if dataset is None: dataset = this_d else: dataset = dataset + this_d dataset /= len(self.npz_list) if value is None: return dataset elif isinstance(value, np.ndarray): np.copyto(value, dataset) elif isinstance(value, cuda.ndarray): value.set(np.asarray(dataset)) else: value = type(value)(np.asarray(dataset)) return value
Example #3
Source File: inception_resnet_v2.py From nips17-adversarial-attack with MIT License | 5 votes |
def lazy_init_conv_to_join(block, x): if not hasattr(block, 'Conv2d_1x1'): with block.init_scope(): block.Conv2d_1x1 = L.Convolution2D(x.shape[1], 1, initialW=I.HeNormal()) if isinstance(x.data, cuda.ndarray): block.Conv2d_1x1.to_gpu(x.data.device)
Example #4
Source File: adaptive_softmax.py From models with MIT License | 5 votes |
def _check_class_weight_option(class_weight): if class_weight is not None: if class_weight.ndim != 1: raise ValueError('class_weight.ndim should be 1') if class_weight.dtype.kind != 'f': raise ValueError('The dtype of class_weight should be \'f\'') if isinstance(class_weight, variable.Variable): raise ValueError('class_weight should be a numpy.ndarray or ' 'cupy.ndarray, not a chainer.Variable')
Example #5
Source File: adaptive_softmax.py From models with MIT License | 5 votes |
def _check_input_values(x, t, ignore_label): # Extract the raw ndarray as Variable.__ge__ is not implemented. # We assume that t is already an ndarray. if isinstance(x, variable.Variable): x = x.data if not (((0 <= t) & (t < x.shape[1])) | (t == ignore_label)).all(): msg = ('Each label `t` need to satisfy ' '`0 <= t < x.shape[1] or t == %d`' % ignore_label) raise ValueError(msg)
Example #6
Source File: adaptive_softmax.py From models with MIT License | 5 votes |
def forward(self, inputs): if any(isinstance(x, cuda.ndarray) for x in inputs): return self.forward_gpu(inputs) else: return self.forward_cpu(inputs)
Example #7
Source File: adaptive_softmax.py From models with MIT License | 5 votes |
def backward(self, inputs, grad_outputs): if any(isinstance(x, cuda.ndarray) for x in inputs + grad_outputs): return self.backward_gpu(inputs, grad_outputs) else: return self.backward_cpu(inputs, grad_outputs)
Example #8
Source File: voxelnet_concat.py From voxelnet_chainer with MIT License | 5 votes |
def _concat_arrays(arrays, padding): if not isinstance(arrays[0], numpy.ndarray) and\ not isinstance(arrays[0], cuda.ndarray): arrays = numpy.asarray(arrays) xp = cuda.get_array_module(arrays[0]) with cuda.get_device_from_array(arrays[0]): return xp.concatenate(arrays)
Example #9
Source File: json_utils.py From chainer-chemistry with MIT License | 5 votes |
def default(self, obj): if isinstance(obj, numpy.integer): return int(obj) elif isinstance(obj, numpy.floating): return float(obj) elif isinstance(obj, numpy.ndarray): return obj.tolist() elif isinstance(obj, cuda.ndarray): return cuda.to_cpu(obj).tolist() elif _is_pathlib_available and isinstance(obj, PurePath): # save as str representation # convert windows path separator to linux format return str(obj).replace('\\', '/') else: return super(JSONEncoderEX, self).default(obj)
Example #10
Source File: vgg.py From chainer-visualization with MIT License | 5 votes |
def check_add_deconv_layers(self, nobias=True): """Add a deconvolutional layer for each convolutional layer already defined in the network.""" if len(self.deconv_blocks) == len(self.conv_blocks): return for conv_block in self.conv_blocks: deconv_block = [] for conv in conv_block: out_channels, in_channels, kh, kw = conv.W.data.shape if isinstance(conv.W.data, cuda.ndarray): initialW = cuda.cupy.asnumpy(conv.W.data) else: initialW = conv.W.data deconv = L.Deconvolution2D(out_channels, in_channels, (kh, kw), stride=conv.stride, pad=conv.pad, initialW=initialW, nobias=nobias) if isinstance(conv.W.data, cuda.ndarray): deconv.to_gpu() self.add_link('de{}'.format(conv.name), deconv) deconv_block.append(deconv) self.deconv_blocks.append(deconv_block)
Example #11
Source File: adaptive_softmax.py From models with MIT License | 4 votes |
def adaptive_softmax_cross_entropy( x, t, Ws, Rs, cutoff, normalize=True, ignore_label=-1, reduce='mean', enable_double_backprop=False): """Computes cross entropy loss for pre-softmax activations. Args: x (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \ :class:`cupy.ndarray`): Variable holding a multidimensional array whose element indicates hidden states: the first axis of the variable represents the number of samples, and the second axis represents the number of hidden units. Ws (list of :class:`~chainer.Variable` or :class:`numpy.ndarray` or \ :class:`cupy.ndarray`): Variables of weight matrices for word outputs. The first matrix is for the head. The rest matrices are for the tails in order. Rs (list of :class:`~chainer.Variable` or :class:`numpy.ndarray` or \ :class:`cupy.ndarray`): Variables of weight matrices for reducing hidden units. The matrices are for the tails in order. The number of matrices must be ``len(Ws) - 1``. t (:class:`~chainer.Variable` or :class:`numpy.ndarray` or \ :class:`cupy.ndarray`): Variable holding an :class:`numpy.int32` vector of ground truth labels. If ``t[i] == ignore_label``, corresponding ``x[i]`` is ignored. cutoff (list of int): Cutoff indices of clusters. e.g. [0, 2000, 10000, n_vocab] normalize (bool): If ``True``, this function normalizes the cross entropy loss across all instances. If ``False``, it only normalizes along a batch size. ignore_label (int): Label value you want to ignore. Its default value is ``-1``. See description of the argument `t`. reduce (str): A string that determines whether to reduce the loss values. If it is ``'mean'``, it computes the sum of the individual cross entropy and normalize it according to ``normalize`` option. If it is ``'no'``, this function computes cross entropy for each instance and does not normalize it (``normalize`` option is ignored). In this case, the loss value of the ignored instance, which has ``ignore_label`` as its target value, is set to ``0``. Returns: ~chainer.Variable: A variable holding a scalar array of the cross entropy loss. If ``reduce`` is ``'mean'``, it is a scalar array. If ``reduce`` is ``'no'``, the shape is same as that of ``x``. """ if enable_double_backprop: raise NotImplementedError() else: return AdaptiveSoftmaxCrossEntropy( cutoff, normalize=normalize, ignore_label=ignore_label, reduce=reduce)( x, t, *Ws, *Rs)