Python imutils.video.WebcamVideoStream() Examples
The following are 9
code examples of imutils.video.WebcamVideoStream().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
imutils.video
, or try the search function
.
Example #1
Source File: live.py From SSD_resnet_pytorch with MIT License | 5 votes |
def cv2_demo(net, transform): def predict(frame): height, width = frame.shape[:2] x = torch.from_numpy(transform(frame)[0]).permute(2, 0, 1) x = Variable(x.unsqueeze(0)) y = net(x) # forward pass detections = y.data # scale each detection back up to the image scale = torch.Tensor([width, height, width, height]) for i in range(detections.size(1)): j = 0 while detections[0, i, j, 0] >= 0.6: pt = (detections[0, i, j, 1:] * scale).cpu().numpy() cv2.rectangle(frame, (int(pt[0]), int(pt[1])), (int(pt[2]), int(pt[3])), COLORS[i % 3], 2) cv2.putText(frame, labelmap[i - 1], (int(pt[0]), int(pt[1])), FONT, 2, (255, 255, 255), 2, cv2.LINE_AA) j += 1 return frame # start video stream thread, allow buffer to fill print("[INFO] starting threaded video stream...") stream = WebcamVideoStream(src=0).start() # default camera time.sleep(1.0) # start fps timer # loop over frames from the video file stream while True: # grab next frame frame = stream.read() key = cv2.waitKey(1) & 0xFF # update FPS counter fps.update() frame = predict(frame) # keybindings for display if key == ord('p'): # pause while True: key2 = cv2.waitKey(1) or 0xff cv2.imshow('frame', frame) if key2 == ord('p'): # resume break cv2.imshow('frame', frame) if key == 27: # exit break
Example #2
Source File: live.py From pytorch-ssd with MIT License | 5 votes |
def cv2_demo(net, transform): def predict(frame): height, width = frame.shape[:2] x = torch.from_numpy(transform(frame)[0]).permute(2, 0, 1) x = Variable(x.unsqueeze(0)) y = net(x) # forward pass detections = y.data # scale each detection back up to the image scale = torch.Tensor([width, height, width, height]) for i in range(detections.size(1)): j = 0 while detections[0, i, j, 0] >= 0.6: pt = (detections[0, i, j, 1:] * scale).cpu().numpy() cv2.rectangle(frame, (int(pt[0]), int(pt[1])), (int(pt[2]), int(pt[3])), COLORS[i % 3], 2) cv2.putText(frame, labelmap[i - 1], (int(pt[0]), int(pt[1])), FONT, 2, (255, 255, 255), 2, cv2.LINE_AA) j += 1 return frame # start video stream thread, allow buffer to fill print("[INFO] starting threaded video stream...") stream = WebcamVideoStream(src=0).start() # default camera time.sleep(1.0) # start fps timer # loop over frames from the video file stream while True: # grab next frame frame = stream.read() key = cv2.waitKey(1) & 0xFF # update FPS counter fps.update() frame = predict(frame) # keybindings for display if key == ord('p'): # pause while True: key2 = cv2.waitKey(1) or 0xff cv2.imshow('frame', frame) if key2 == ord('p'): # resume break cv2.imshow('frame', frame) if key == 27: # exit break
Example #3
Source File: live.py From CSD-SSD with MIT License | 4 votes |
def cv2_demo(net, transform): def predict(frame): height, width = frame.shape[:2] x = torch.from_numpy(transform(frame)[0]).permute(2, 0, 1) x = Variable(x.unsqueeze(0)) y = net(x) # forward pass detections = y.data # scale each detection back up to the image scale = torch.Tensor([width, height, width, height]) for i in range(detections.size(1)): j = 0 while detections[0, i, j, 0] >= 0.6: pt = (detections[0, i, j, 1:] * scale).cpu().numpy() cv2.rectangle(frame, (int(pt[0]), int(pt[1])), (int(pt[2]), int(pt[3])), COLORS[i % 3], 2) cv2.putText(frame, labelmap[i - 1], (int(pt[0]), int(pt[1])), FONT, 2, (255, 255, 255), 2, cv2.LINE_AA) j += 1 return frame # start video stream thread, allow buffer to fill print("[INFO] starting threaded video stream...") stream = WebcamVideoStream(src=0).start() # default camera time.sleep(1.0) # start fps timer # loop over frames from the video file stream while True: # grab next frame frame = stream.read() key = cv2.waitKey(1) & 0xFF # update FPS counter fps.update() frame = predict(frame) # keybindings for display if key == ord('p'): # pause while True: key2 = cv2.waitKey(1) or 0xff cv2.imshow('frame', frame) if key2 == ord('p'): # resume break cv2.imshow('frame', frame) if key == 27: # exit break
Example #4
Source File: live.py From grouped-ssd-pytorch with MIT License | 4 votes |
def cv2_demo(net, transform): def predict(frame): height, width = frame.shape[:2] x = torch.from_numpy(transform(frame)[0]).permute(2, 0, 1) x = Variable(x.unsqueeze(0)) y = net(x) # forward pass detections = y.data # scale each detection back up to the image scale = torch.Tensor([width, height, width, height]) for i in range(detections.size(1)): j = 0 while detections[0, i, j, 0] >= 0.6: pt = (detections[0, i, j, 1:] * scale).cpu().numpy() cv2.rectangle(frame, (int(pt[0]), int(pt[1])), (int(pt[2]), int(pt[3])), COLORS[i % 3], 2) cv2.putText(frame, labelmap[i - 1], (int(pt[0]), int(pt[1])), FONT, 2, (255, 255, 255), 2, cv2.LINE_AA) j += 1 return frame # start video stream thread, allow buffer to fill print("[INFO] starting threaded video stream...") stream = WebcamVideoStream(src=0).start() # default camera time.sleep(1.0) # start fps timer # loop over frames from the video file stream while True: # grab next frame frame = stream.read() key = cv2.waitKey(1) & 0xFF # update FPS counter fps.update() frame = predict(frame) # keybindings for display if key == ord('p'): # pause while True: key2 = cv2.waitKey(1) or 0xff cv2.imshow('frame', frame) if key2 == ord('p'): # resume break cv2.imshow('frame', frame) if key == 27: # exit break
Example #5
Source File: live.py From RefineDet.PyTorch with MIT License | 4 votes |
def cv2_demo(net, transform): def predict(frame): height, width = frame.shape[:2] x = torch.from_numpy(transform(frame)[0]).permute(2, 0, 1) x = Variable(x.unsqueeze(0)) y = net(x) # forward pass detections = y.data # scale each detection back up to the image scale = torch.Tensor([width, height, width, height]) for i in range(detections.size(1)): j = 0 while detections[0, i, j, 0] >= 0.6: pt = (detections[0, i, j, 1:] * scale).cpu().numpy() cv2.rectangle(frame, (int(pt[0]), int(pt[1])), (int(pt[2]), int(pt[3])), COLORS[i % 3], 2) cv2.putText(frame, labelmap[i - 1], (int(pt[0]), int(pt[1])), FONT, 2, (255, 255, 255), 2, cv2.LINE_AA) j += 1 return frame # start video stream thread, allow buffer to fill print("[INFO] starting threaded video stream...") stream = WebcamVideoStream(src=0).start() # default camera time.sleep(1.0) # start fps timer # loop over frames from the video file stream while True: # grab next frame frame = stream.read() key = cv2.waitKey(1) & 0xFF # update FPS counter fps.update() frame = predict(frame) # keybindings for display if key == ord('p'): # pause while True: key2 = cv2.waitKey(1) or 0xff cv2.imshow('frame', frame) if key2 == ord('p'): # resume break cv2.imshow('frame', frame) if key == 27: # exit break
Example #6
Source File: EyeCanSee.py From cv-lane with Apache License 2.0 | 4 votes |
def __init__(self, center=int(cvsettings.CAMERA_WIDTH / 2), debug=False, is_usb_webcam=True, period_s=0.025): # Our video stream # If its not a usb webcam then get pi camera if not is_usb_webcam: self.vs = PiVideoStream(resolution=(cvsettings.CAMERA_WIDTH, cvsettings.CAMERA_HEIGHT)) # Camera cvsettings self.vs.camera.shutter_speed = cvsettings.SHUTTER self.vs.camera.exposure_mode = cvsettings.EXPOSURE_MODE self.vs.camera.exposure_compensation = cvsettings.EXPOSURE_COMPENSATION self.vs.camera.awb_gains = cvsettings.AWB_GAINS self.vs.camera.awb_mode = cvsettings.AWB_MODE self.vs.camera.saturation = cvsettings.SATURATION self.vs.camera.rotation = cvsettings.ROTATION self.vs.camera.video_stabilization = cvsettings.VIDEO_STABALIZATION self.vs.camera.iso = cvsettings.ISO self.vs.camera.brightness = cvsettings.BRIGHTNESS self.vs.camera.contrast = cvsettings.CONTRAST # Else get the usb camera else: self.vs = WebcamVideoStream(src=0) self.vs.stream.set(cv2.CAP_PROP_FRAME_WIDTH, cvsettings.CAMERA_WIDTH) self.vs.stream.set(cv2.CAP_PROP_FRAME_HEIGHT, cvsettings.CAMERA_HEIGHT) # Has camera started self.camera_started = False self.start_camera() # Starts our camera # To calculate our error in positioning self.center = center # To determine if we actually detected lane or not self.detected_lane = False # debug mode on? (to display processed images) self.debug = debug # Time interval between in update (in ms) # FPS = 1/period_s self.period_s = period_s # Starting time self.start_time = time.time() # Mouse event handler for get_hsv
Example #7
Source File: live.py From repulsion_loss_ssd with MIT License | 4 votes |
def cv2_demo(net, transform): def predict(frame): height, width = frame.shape[:2] x = torch.from_numpy(transform(frame)[0]).permute(2, 0, 1) x = Variable(x.unsqueeze(0)) y = net(x) # forward pass detections = y.data # scale each detection back up to the image scale = torch.Tensor([width, height, width, height]) for i in range(detections.size(1)): j = 0 while detections[0, i, j, 0] >= 0.6: pt = (detections[0, i, j, 1:] * scale).cpu().numpy() cv2.rectangle(frame, (int(pt[0]), int(pt[1])), (int(pt[2]), int(pt[3])), COLORS[i % 3], 2) cv2.putText(frame, labelmap[i - 1], (int(pt[0]), int(pt[1])), FONT, 2, (255, 255, 255), 2, cv2.LINE_AA) j += 1 return frame # start video stream thread, allow buffer to fill print("[INFO] starting threaded video stream...") stream = WebcamVideoStream(src=0).start() # default camera time.sleep(1.0) # start fps timer # loop over frames from the video file stream while True: # grab next frame frame = stream.read() key = cv2.waitKey(1) & 0xFF # update FPS counter fps.update() frame = predict(frame) # keybindings for display if key == ord('p'): # pause while True: key2 = cv2.waitKey(1) or 0xff cv2.imshow('frame', frame) if key2 == ord('p'): # resume break cv2.imshow('frame', frame) if key == 27: # exit break
Example #8
Source File: live.py From ssd.pytorch with MIT License | 4 votes |
def cv2_demo(net, transform): def predict(frame): height, width = frame.shape[:2] x = torch.from_numpy(transform(frame)[0]).permute(2, 0, 1) x = Variable(x.unsqueeze(0)) y = net(x) # forward pass detections = y.data # scale each detection back up to the image scale = torch.Tensor([width, height, width, height]) for i in range(detections.size(1)): j = 0 while detections[0, i, j, 0] >= 0.6: pt = (detections[0, i, j, 1:] * scale).cpu().numpy() cv2.rectangle(frame, (int(pt[0]), int(pt[1])), (int(pt[2]), int(pt[3])), COLORS[i % 3], 2) cv2.putText(frame, labelmap[i - 1], (int(pt[0]), int(pt[1])), FONT, 2, (255, 255, 255), 2, cv2.LINE_AA) j += 1 return frame # start video stream thread, allow buffer to fill print("[INFO] starting threaded video stream...") stream = WebcamVideoStream(src=0).start() # default camera time.sleep(1.0) # start fps timer # loop over frames from the video file stream while True: # grab next frame frame = stream.read() key = cv2.waitKey(1) & 0xFF # update FPS counter fps.update() frame = predict(frame) # keybindings for display if key == ord('p'): # pause while True: key2 = cv2.waitKey(1) or 0xff cv2.imshow('frame', frame) if key2 == ord('p'): # resume break cv2.imshow('frame', frame) if key == 27: # exit break
Example #9
Source File: live.py From multitrident with Apache License 2.0 | 4 votes |
def cv2_demo(net, transform): def predict(frame): height, width = frame.shape[:2] x = torch.from_numpy(transform(frame)[0]).permute(2, 0, 1) x = Variable(x.unsqueeze(0)) y = net(x) # forward pass detections = y.data # scale each detection back up to the image scale = torch.Tensor([width, height, width, height]) for i in range(detections.size(1)): j = 0 while detections[0, i, j, 0] >= 0.6: pt = (detections[0, i, j, 1:] * scale).cpu().numpy() cv2.rectangle(frame, (int(pt[0]), int(pt[1])), (int(pt[2]), int(pt[3])), COLORS[i % 3], 2) cv2.putText(frame, labelmap[i - 1], (int(pt[0]), int(pt[1])), FONT, 2, (255, 255, 255), 2, cv2.LINE_AA) j += 1 return frame # start video stream thread, allow buffer to fill print("[INFO] starting threaded video stream...") stream = WebcamVideoStream(src=0).start() # default camera time.sleep(1.0) # start fps timer # loop over frames from the video file stream while True: # grab next frame frame = stream.read() key = cv2.waitKey(1) & 0xFF # update FPS counter fps.update() frame = predict(frame) # keybindings for display if key == ord('p'): # pause while True: key2 = cv2.waitKey(1) or 0xff cv2.imshow('frame', frame) if key2 == ord('p'): # resume break cv2.imshow('frame', frame) if key == 27: # exit break