Python scipy.linalg.block_diag() Examples
The following are 30
code examples of scipy.linalg.block_diag().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy.linalg
, or try the search function
.
Example #1
Source File: test_ukf.py From filterpy with MIT License | 6 votes |
def test_simplex_sigma_points_2D(): """ tests passing 1D data into sigma_points""" sp = SimplexSigmaPoints(4) Wm, Wc = sp.Wm, sp.Wc assert np.allclose(Wm, Wc, 1e-12) assert len(Wm) == 5 mean = np.array([-1, 2, 0, 5]) cov1 = np.array([[1, 0.5], [0.5, 1]]) cov2 = np.array([[5, 0.5], [0.5, 3]]) cov = linalg.block_diag(cov1, cov2) Xi = sp.sigma_points(mean, cov) xm, ucov = unscented_transform(Xi, Wm, Wc) assert np.allclose(xm, mean) assert np.allclose(cov, ucov)
Example #2
Source File: test_decompositions_integration.py From strawberryfields with Apache License 2.0 | 6 votes |
def test_rotated_squeezed(self, setup_eng, hbar, tol): """Testing decomposed rotated squeezed state""" eng, prog = setup_eng(3) r = 0.1 phi = 0.2312 v1 = (hbar / 2) * np.diag([np.exp(-r), np.exp(r)]) A = changebasis(3) cov = A.T @ block_diag(*[rot(phi) @ v1 @ rot(phi).T] * 3) @ A with prog.context as q: ops.Gaussian(cov) | q state = eng.run(prog).state assert np.allclose(state.cov(), cov, atol=tol) assert len(eng.run_progs[-1]) == 3
Example #3
Source File: statesp_array_test.py From python-control with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_matrix_static_gain(self): """Regression: can we create matrix static gains?""" d1 = np.array([[1, 2, 3], [4, 5, 6]]) d2 = np.array([[7, 8], [9, 10], [11, 12]]) g1 = StateSpace([], [], [], d1) # _remove_useless_states was making A = [[0]] self.assertEqual((0, 0), g1.A.shape) g2 = StateSpace([], [], [], d2) g3 = StateSpace([], [], [], d2.T) h1 = g1 * g2 np.testing.assert_array_equal(np.dot(d1, d2), h1.D) h2 = g1 + g3 np.testing.assert_array_equal(d1 + d2.T, h2.D) h3 = g1.feedback(g2) np.testing.assert_array_almost_equal( solve(np.eye(2) + np.dot(d1, d2), d1), h3.D) h4 = g1.append(g2) np.testing.assert_array_equal(block_diag(d1, d2), h4.D)
Example #4
Source File: statesp_test.py From python-control with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_matrix_static_gain(self): """Regression: can we create matrix static gains?""" d1 = np.matrix([[1, 2, 3], [4, 5, 6]]) d2 = np.matrix([[7, 8], [9, 10], [11, 12]]) g1 = StateSpace([], [], [], d1) # _remove_useless_states was making A = [[0]] self.assertEqual((0, 0), g1.A.shape) g2 = StateSpace([], [], [], d2) g3 = StateSpace([], [], [], d2.T) h1 = g1 * g2 np.testing.assert_array_equal(d1 * d2, h1.D) h2 = g1 + g3 np.testing.assert_array_equal(d1 + d2.T, h2.D) h3 = g1.feedback(g2) np.testing.assert_array_almost_equal( solve(np.eye(2) + d1 * d2, d1), h3.D) h4 = g1.append(g2) np.testing.assert_array_equal(block_diag(d1, d2), h4.D)
Example #5
Source File: feedback_linearizable_output.py From lyapy with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, vector_relative_degree, permutation_idxs=None): """Initialize a FeedbackLinearizableOutput object. Inputs: List of relative degrees, vector_relative_degree: int list Permutation indices, permutation_idxs: numpy array (p,) """ self.vector_relative_degree = vector_relative_degree output_size = sum(vector_relative_degree) if permutation_idxs is None: permutation_idxs = arange(output_size) self.permutation_idxs = permutation_idxs self.reverse_permutation_idxs = argsort(permutation_idxs) self.relative_degree_idxs = cumsum(vector_relative_degree) - 1 non_relative_degree_idxs = delete(arange(output_size), self.relative_degree_idxs) self.blocking_idxs = concatenate([non_relative_degree_idxs, self.relative_degree_idxs]) self.unblocking_idxs = argsort(self.blocking_idxs) F = block_diag(*[diag(ones(gamma - 1), 1) for gamma in vector_relative_degree]) G = block_diag(*[concatenate([zeros(gamma - 1), ones(1)]) for gamma in vector_relative_degree]).T self.F = self.reverse_permute(self.reverse_permute(F).T).T self.G = self.reverse_permute(G)
Example #6
Source File: test_layers.py From bruno with MIT License | 6 votes |
def create_covariance_matrix(n, p, cov_u, var_u): if p == 1: K = np.ones((n, n)) * cov_u np.fill_diagonal(K, var_u) else: v = np.eye(p) diagonal = [v] * n K_v = block_diag(*diagonal) r = np.ones((p, p)) * cov_u np.fill_diagonal(r, var_u) diagonal = [r] * n K_r = block_diag(*diagonal) K = np.kron(np.ones((n, n)), r) K = K - K_r + K_v return K
Example #7
Source File: tools_fri_doa_plane.py From FRIDA with MIT License | 6 votes |
def output_shrink(K, L): """ shrink the convolution output to half the size. used when both the annihilating filter and the uniform samples of sinusoids satisfy Hermitian symmetric. :param K: the annihilating filter size: K + 1 :param L: length of the (complex-valued) b vector :return: """ out_len = L - K if out_len % 2 == 0: half_out_len = np.int(out_len / 2.) mtx_r = np.hstack((np.eye(half_out_len), np.zeros((half_out_len, half_out_len)))) mtx_i = mtx_r else: half_out_len = np.int((out_len + 1) / 2.) mtx_r = np.hstack((np.eye(half_out_len), np.zeros((half_out_len, half_out_len - 1)))) mtx_i = np.hstack((np.eye(half_out_len - 1), np.zeros((half_out_len - 1, half_out_len)))) return linalg.block_diag(mtx_r, mtx_i)
Example #8
Source File: test_decompositions_integration.py From strawberryfields with Apache License 2.0 | 6 votes |
def test_rotated_squeezed(self, setup_eng, cutoff, hbar, tol): eng, prog = setup_eng(3) r = 0.1 phi = 0.2312 in_state = squeezed_state(r, phi, basis="fock", fock_dim=cutoff) v1 = (hbar / 2) * np.diag([np.exp(-2 * r), np.exp(2 * r)]) A = changebasis(3) cov = A.T @ block_diag(*[rot(phi) @ v1 @ rot(phi).T] * 3) @ A with prog.context as q: ops.Gaussian(cov) | q state = eng.run(prog).state assert len(eng.run_progs[-1]) == 3 for n in range(3): assert np.allclose(state.fidelity(in_state, n), 1, atol=tol)
Example #9
Source File: tools_fri_doa_plane.py From FRIDA with MIT License | 6 votes |
def mtx_fri2visi_ri_multiband(M, p_mic_x_all, p_mic_y_all, D1, D2, aslist=False): """ build the matrix that maps the Fourier series to the visibility in terms of REAL-VALUED entries only. (matrix size double) :param M: the Fourier series expansion is limited from -M to M :param p_mic_x_all: a matrix that contains microphones x coordinates :param p_mic_y_all: a matrix that contains microphones y coordinates :param D1: expansion matrix for the real-part :param D2: expansion matrix for the imaginary-part :return: """ num_bands = p_mic_x_all.shape[1] if aslist: return [mtx_fri2visi_ri(M, p_mic_x_all[:, band_count], p_mic_y_all[:, band_count], D1, D2) for band_count in range(num_bands)] else: return linalg.block_diag(*[mtx_fri2visi_ri(M, p_mic_x_all[:, band_count], p_mic_y_all[:, band_count], D1, D2) for band_count in range(num_bands)])
Example #10
Source File: test_minimized_constrained.py From ip-nonlinear-solver with BSD 3-Clause "New" or "Revised" License | 6 votes |
def constr(self): def fun(x): x_coord, y_coord, z_coord = self._get_cordinates(x) return x_coord**2 + y_coord**2 + z_coord**2 - 1 def jac(x): x_coord, y_coord, z_coord = self._get_cordinates(x) Jx = 2 * np.diag(x_coord) Jy = 2 * np.diag(y_coord) Jz = 2 * np.diag(z_coord) return csc_matrix(np.hstack((Jx, Jy, Jz))) def hess(x, v): D = 2 * np.diag(v) return block_diag(D, D, D) return NonlinearConstraint(fun, ("less",), jac, hess)
Example #11
Source File: test_kf.py From filterpy with MIT License | 6 votes |
def const_vel_filter_2d(dt, x_ndim=1, P_diag=(1., 1, 1, 1), R_std=1., Q_var=0.0001): """ helper, constructs 1d, constant velocity filter""" kf = KalmanFilter(dim_x=4, dim_z=2) kf.x = np.array([[0., 0., 0., 0.]]).T kf.P *= np.diag(P_diag) kf.F = np.array([[1., dt, 0., 0.], [0., 1., 0., 0.], [0., 0., 1., dt], [0., 0., 0., 1.]]) kf.H = np.array([[1., 0, 0, 0], [0., 0, 1, 0]]) kf.R *= np.eye(2) * (R_std**2) q = Q_discrete_white_noise(dim=2, dt=dt, var=Q_var) kf.Q = block_diag(q, q) return kf
Example #12
Source File: test_adjacency.py From nltools with MIT License | 6 votes |
def test_regression(): # Test Adjacency Regression m1 = block_diag(np.ones((4, 4)), np.zeros((4, 4)), np.zeros((4, 4))) m2 = block_diag(np.zeros((4, 4)), np.ones((4, 4)), np.zeros((4, 4))) m3 = block_diag(np.zeros((4, 4)), np.zeros((4, 4)), np.ones((4, 4))) Y = Adjacency(m1*1+m2*2+m3*3, matrix_type='similarity') X = Adjacency([m1, m2, m3], matrix_type='similarity') stats = Y.regress(X) assert np.allclose(stats['beta'], np.array([1, 2, 3])) # Test Design_Matrix Regression n = 10 d = Adjacency([block_diag(np.ones((4, 4))+np.random.randn(4, 4)*.1, np.zeros((8, 8))) for x in range(n)], matrix_type='similarity') X = Design_Matrix(np.ones(n)) stats = d.regress(X) out = stats['beta'].within_cluster_mean(clusters=['Group1']*4 + ['Group2']*8) assert np.allclose(np.array([out['Group1'], out['Group2']]), np.array([1, 0]), rtol=1e-01) # np.allclose(np.sum(stats['beta']-np.array([1,2,3])),0)
Example #13
Source File: surface_multicomp.py From isofit with Apache License 2.0 | 6 votes |
def Sa(self, x_surface, geom): """Covariance of prior distribution, calculated at state x. We find the covariance in a normalized space (normalizing by z) and then un- normalize the result for the calling function.""" lamb = self.calc_lamb(x_surface, geom) lamb_ref = lamb[self.idx_ref] ci = self.component(x_surface, geom) Cov = self.components[ci][1] Cov = Cov * (self.norm(lamb_ref)**2) # If there are no other state vector elements, we're done. if len(self.statevec_names) == len(self.idx_lamb): return Cov # Embed into a larger state vector covariance matrix nprefix = self.idx_lamb[0] nsuffix = len(self.statevec_names) - self.idx_lamb[-1] - 1 Cov_prefix = np.zeros((nprefix, nprefix)) Cov_suffix = np.zeros((nsuffix, nsuffix)) return block_diag(Cov_prefix, Cov, Cov_suffix)
Example #14
Source File: test_minimize_constrained.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def constr(self): def fun(x): x_coord, y_coord, z_coord = self._get_cordinates(x) return x_coord**2 + y_coord**2 + z_coord**2 - 1 if self.constr_jac is None: def jac(x): x_coord, y_coord, z_coord = self._get_cordinates(x) Jx = 2 * np.diag(x_coord) Jy = 2 * np.diag(y_coord) Jz = 2 * np.diag(z_coord) return csc_matrix(np.hstack((Jx, Jy, Jz))) else: jac = self.constr_jac if self.constr_hess is None: def hess(x, v): D = 2 * np.diag(v) return block_diag(D, D, D) else: hess = self.constr_hess return NonlinearConstraint(fun, -np.inf, 0, jac, hess)
Example #15
Source File: test_default_gaussian.py From pennylane with Apache License 2.0 | 6 votes |
def test_controlled_phase(self, tol): """Test the CZ symplectic transform.""" s = 0.543 S = controlled_phase(s) # test that S = R_2(pi/2) CX(s) R_2(pi/2)^\dagger R2 = block_diag(np.identity(2), rotation(np.pi/2))[:, [0, 2, 1, 3]][[0, 2, 1, 3]] expected = R2 @ controlled_addition(s) @ R2.conj().T assert S == pytest.approx(expected, abs=tol) # test that S[x1, x2, p1, p2] -> [x1, x2, p1+sx2, p2+sx1] x1 = 0.5432 x2 = -0.453 p1 = 0.154 p2 = -0.123 out = S @ np.array([x1, x2, p1, p2])*np.sqrt(2*hbar) expected = np.array([x1, x2, p1+s*x2, p2+s*x1])*np.sqrt(2*hbar) assert out == pytest.approx(expected, abs=tol)
Example #16
Source File: test_default_gaussian.py From pennylane with Apache License 2.0 | 6 votes |
def test_controlled_addition(self, tol): """Test the CX symplectic transform.""" s = 0.543 S = controlled_addition(s) # test that S = B(theta+pi/2, 0) [S(z) x S(-z)] B(theta, 0) r = np.arcsinh(-s/2) theta = 0.5*np.arctan2(-1/np.cosh(r), -np.tanh(r)) Sz = block_diag(squeezing(r, 0), squeezing(-r, 0))[:, [0, 2, 1, 3]][[0, 2, 1, 3]] expected = beamsplitter(theta+np.pi/2, 0) @ Sz @ beamsplitter(theta, 0) assert S == pytest.approx(expected, abs=tol) # test that S[x1, x2, p1, p2] -> [x1, x2+sx1, p1-sp2, p2] x1 = 0.5432 x2 = -0.453 p1 = 0.154 p2 = -0.123 out = S @ np.array([x1, x2, p1, p2])*np.sqrt(2*hbar) expected = np.array([x1, x2+s*x1, p1-s*p2, p2])*np.sqrt(2*hbar) assert out == pytest.approx(expected, abs=tol)
Example #17
Source File: pinchon_hoggan_dense.py From lie_learn with MIT License | 6 votes |
def SO3_irreps(g, irreps): global Jd # First, compute sinusoids at all required frequencies, i.e. # cos(n x) for n=0, ..., max(irreps) # sin(n x) for n=-max(irreps), ..., max(irreps) # where x ranges over the three parameters of SO(3). # In theory, it may be faster to evaluate cos(x) once and then use # Chebyshev polynomials to obtain cos(n*x), but in practice this appears # to be slower than just evaluating cos(n*x). dim = np.sum(2 * np.array(irreps) + 1) T = np.empty((dim, dim, g.shape[1])) for i in range(g.shape[1]): T[:, :, i] = block_diag(*[rot_mat(g[0, i], g[1, i], g[2, i], l, Jd[l]) for l in irreps]) return T
Example #18
Source File: test_default_gaussian.py From pennylane with Apache License 2.0 | 6 votes |
def test_two_mode_squeezing(self, tol): """Test the two mode squeezing symplectic transform.""" r = 0.543 phi = 0.123 S = two_mode_squeezing(r, phi) # test that S = B^\dagger(pi/4, 0) [S(z) x S(-z)] B(pi/4) B = beamsplitter(np.pi/4, 0) Sz = block_diag(squeezing(r, phi), squeezing(-r, phi))[:, [0, 2, 1, 3]][[0, 2, 1, 3]] expected = B.conj().T @ Sz @ B assert S == pytest.approx(expected, abs=tol) # test that S |a1, a2> = |ta1+ra2, ta2+ra1> a1 = 0.23+0.12j a2 = 0.23+0.12j out = S @ np.array([a1.real, a2.real, a1.imag, a2.imag])*np.sqrt(2*hbar) T = np.cosh(r) R = np.exp(1j*phi)*np.sinh(r) a1out = T*a1 + R*np.conj(a2) a2out = T*a2 + R*np.conj(a1) expected = np.array([a1out.real, a2out.real, a1out.imag, a2out.imag])*np.sqrt(2*hbar) assert out == pytest.approx(expected, abs=tol)
Example #19
Source File: cv.py From pennylane with Apache License 2.0 | 6 votes |
def _rotation(phi, bare=False): r"""Utility function, returns the Heisenberg transformation of a phase rotation gate. The transformation matrix returned is: .. math:: M = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\phi & -\sin\phi\\ 0 & \sin\phi & \cos\phi \end{bmatrix} Args: phi (float): rotation angle. bare (bool): if True, return a simple 2d rotation matrix Returns: array[float]: transformation matrix """ c = math.cos(phi) s = math.sin(phi) temp = np.array([[c, -s], [s, c]]) if bare: return temp return block_diag(1, temp) # pylint: disable=no-member
Example #20
Source File: test_symplectic.py From thewalrus with Apache License 2.0 | 6 votes |
def test_decompose(self, tol): """Test the two mode squeezing symplectic transform decomposes correctly.""" r = 0.543 phi = 0.123 S = symplectic.two_mode_squeezing(r, phi) # test that S = B^\dagger(pi/4, 0) [S(z) x S(-z)] B(pi/4) # fmt: off B = np.array([[1, -1, 0, 0], [1, 1, 0, 0], [0, 0, 1, -1], [0, 0, 1, 1]])/np.sqrt(2) Sq1 = np.array([[np.cosh(r)-np.cos(phi)*np.sinh(r), -np.sin(phi)*np.sinh(r)], [-np.sin(phi)*np.sinh(r), np.cosh(r)+np.cos(phi)*np.sinh(r)]]) Sq2 = np.array([[np.cosh(-r)-np.cos(phi)*np.sinh(-r), -np.sin(phi)*np.sinh(-r)], [-np.sin(phi)*np.sinh(-r), np.cosh(-r)+np.cos(phi)*np.sinh(-r)]]) # fmt: on Sz = block_diag(Sq1, Sq2)[:, [0, 2, 1, 3]][[0, 2, 1, 3]] expected = B.conj().T @ Sz @ B assert np.allclose(S, expected, atol=tol, rtol=0)
Example #21
Source File: contact.py From pymanoid with GNU General Public License v3.0 | 6 votes |
def set_wrench(self, wrench): """ Set contact wrench directly. Parameters ---------- wrench : array, shape=(6,) Wrench coordinates given in the contact frame. Notes ----- This function switches the contact to "managed" mode, as opposed to the default "supporting" mode where the wrench distributor finds contact wrenches by numerical optimization. """ if not type(wrench) is ndarray: wrench = array(wrench) if not self.is_managed: self.set_color('b') self.is_managed = True self.wrench = dot(block_diag(self.R, self.R), wrench)
Example #22
Source File: matrices.py From mici with MIT License | 5 votes |
def _construct_array(self): return sla.block_diag(*(block.array for block in self._blocks))
Example #23
Source File: forward.py From isofit with Apache License 2.0 | 5 votes |
def Sa(self, x, geom): """Calculate the prior covariance of the state vector (the concatenation of state vectors for the surface and radiative transfer model). NOTE: the surface prior depends on the current state; this is so we can calculate the local prior. """ x_surface = x[self.idx_surface] Sa_surface = self.surface.Sa(x_surface, geom)[:, :] Sa_RT = self.RT.Sa()[:, :] Sa_instrument = self.instrument.Sa()[:, :] return block_diag(Sa_surface, Sa_RT, Sa_instrument)
Example #24
Source File: res_quadratic_control_lyapunov_function.py From lyapy with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, robotic_system_output, P, Q, epsilon): M = block_diag(identity(robotic_system_output.k) / epsilon, identity(robotic_system_output.k)) P = dot(M, dot(P, M)) * epsilon Q = dot(M, dot(Q, M)) alpha = min(eigvals(Q)) / max(eigvals(P)) QuadraticControlLyapunovFunction.__init__(self, robotic_system_output, P, alpha)
Example #25
Source File: ph_adaptive.py From dymos with Apache License 2.0 | 5 votes |
def interpolation_lagrange_matrix(old_grid, new_grid): """ Evaluate lagrange matrix to interpolate state and control values from the solved grid onto the new grid Parameters ---------- old_grid: GridData The GridData object representing the grid on which the problem has been solved new_grid: GridData The GridData object representing the new, higher-order grid Returns ------- L: np.ndarray The lagrange interpolation matrix """ L_blocks = [] for iseg in range(old_grid.num_segments): i1, i2 = old_grid.subset_segment_indices['all'][iseg, :] indices = old_grid.subset_node_indices['all'][i1:i2] nodes_given = old_grid.node_stau[indices] i1, i2 = new_grid.subset_segment_indices['all'][iseg, :] indices = new_grid.subset_node_indices['all'][i1:i2] nodes_eval = new_grid.node_stau[indices] L_block, _ = lagrange_matrices(nodes_given, nodes_eval) L_blocks.append(L_block) L = block_diag(*L_blocks) return L
Example #26
Source File: ph_adaptive.py From dymos with Apache License 2.0 | 5 votes |
def integration_matrix(grid): """ Evaluate the Integration matrix of the given grid. Parameters ---------- grid: GridData The GridData object representing the grid on which the integration matrix is to be evaluated Returns ------- I: np.ndarray The integration matrix used to propagate initial states over segments """ I_blocks = [] for iseg in range(grid.num_segments): i1, i2 = grid.subset_segment_indices['all'][iseg, :] indices = grid.subset_node_indices['all'][i1:i2] nodes_given = grid.node_stau[indices] i1, i2 = grid.subset_segment_indices['all'][iseg, :] indices = grid.subset_node_indices['all'][i1:i2] nodes_eval = grid.node_stau[indices][1:] _, D_block = lagrange_matrices(nodes_given, nodes_eval) I_block = np.linalg.inv(D_block[:, 1:]) I_blocks.append(I_block) I = block_diag(*I_blocks) return I
Example #27
Source File: test_integration.py From thewalrus with Apache License 2.0 | 5 votes |
def test_four_modes(hbar): """ Test that probabilities are correctly updates for a four modes system under loss""" # All this block is to generate the correct covariance matrix. # It correnponds to num_modes=4 modes that undergo two mode squeezing between modes i and i + (num_modes / 2). # Then they undergo displacement. # The signal and idlers see and interferometer with unitary matrix u2x2. # And then they see loss by amount etas[i]. num_modes = 4 theta = 0.45 phi = 0.7 u2x2 = np.array([[np.cos(theta / 2), np.exp(1j * phi) * np.sin(theta / 2)], [-np.exp(-1j * phi) * np.sin(theta / 2), np.cos(theta / 2)]]) u4x4 = block_diag(u2x2, u2x2) cov = np.identity(2 * num_modes) * hbar / 2 means = 0.5 * np.random.rand(2 * num_modes) * np.sqrt(hbar / 2) rs = [0.1, 0.9] n_half = num_modes // 2 for i, r_val in enumerate(rs): Sexpanded = expand(two_mode_squeezing(r_val, 0.0), [i, n_half + i], num_modes) cov = Sexpanded @ cov @ (Sexpanded.T) Su = expand(interferometer(u4x4), range(num_modes), num_modes) cov = Su @ cov @ (Su.T) cov_lossless = np.copy(cov) means_lossless = np.copy(means) etas = [0.9, 0.7, 0.9, 0.1] for i, eta in enumerate(etas): means, cov = loss(means, cov, eta, i, hbar=hbar) cutoff = 3 probs_lossless = probabilities(means_lossless, cov_lossless, 4 * cutoff, hbar=hbar) probs = probabilities(means, cov, cutoff, hbar=hbar) probs_updated = update_probabilities_with_loss(etas, probs_lossless) assert np.allclose(probs, probs_updated[:cutoff, :cutoff, :cutoff, :cutoff], atol=1e-6)
Example #28
Source File: contact.py From pymanoid with GNU General Public License v3.0 | 5 votes |
def compute_static_equilibrium_polygon(self, method='hull'): """ Compute the static-equilibrium polygon of the center of mass. Parameters ---------- method : string, optional Choice between 'bretl', 'cdd' or 'hull'. Returns ------- vertices : list of arrays 2D vertices of the static-equilibrium polygon. Notes ----- The method 'bretl' is adapted from in [Bretl08]_ where the static-equilibrium polygon was introduced. The method 'cdd' corresponds to the double-description approach described in [Caron17z]_. See the Appendix from [Caron16]_ for a performance comparison. """ if method == 'hull': A_O = self.compute_wrench_inequalities([0, 0, 0]) k, a_Oz, a_x, a_y = A_O.shape[0], A_O[:, 2], A_O[:, 3], A_O[:, 4] B, c = hstack([-a_y.reshape((k, 1)), +a_x.reshape((k, 1))]), -a_Oz return compute_polygon_hull(B, c) G_0 = self.compute_grasp_matrix([0., 0., 0.]) F = block_diag(*[ct.wrench_inequalities for ct in self.contacts]) mass = 42. # [kg] # mass has no effect on the output polygon, see IV.B in [Caron16]_ E = 1. / (mass * 9.81) * vstack([-G_0[4, :], +G_0[3, :]]) f = array([0., 0.]) return project_polytope( proj=(E, f), ineq=(F, zeros(F.shape[0])), eq=(G_0[(0, 1, 2, 5), :], array([0, 0, mass * 9.81, 0])), method=method)
Example #29
Source File: tools_fri_doa_plane.py From FRIDA with MIT License | 5 votes |
def mtx_fri2visi_ri(M, p_mic_x, p_mic_y, D1, D2): """ build the matrix that maps the Fourier series to the visibility in terms of REAL-VALUED entries only. (matrix size double) :param M: the Fourier series expansion is limited from -M to M :param p_mic_x: a vector that contains microphones x coordinates :param p_mic_y: a vector that contains microphones y coordinates :param D1: expansion matrix for the real-part :param D2: expansion matrix for the imaginary-part :return: """ return np.dot(cpx_mtx2real(mtx_freq2visi(M, p_mic_x, p_mic_y)), linalg.block_diag(D1, D2))
Example #30
Source File: VehicleTracker.py From VehicleDetectionAndTracking with GNU General Public License v3.0 | 5 votes |
def __init__(self): # Initialize parameters for tracker self.id = 0 self.num_hits = 0 self.num_unmatched = 0 self.box = [] # Initialize parameters for the Kalman filter self.kf = KalmanFilter(dim_x=8, dim_z=8) self.dt = 1.0 self.x_state = [] # State transition matrix (assuming constant velocity model) self.kf.F = np.array([[1, self.dt, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, self.dt, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, self.dt, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, self.dt], [0, 0, 0, 0, 0, 0, 0, 1]]) # Measurement matrix (assuming we can only measure the coordinates) self.kf.H = np.array([[1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0]]) # State covariance matrix self.kf.P *= 100.0 # Process uncertainty self.Q_comp_mat = np.array([[self.dt ** 4 / 2., self.dt ** 3 / 2.], [self.dt ** 3 / 2., self.dt ** 2]]) self.kf.Q = block_diag(self.Q_comp_mat, self.Q_comp_mat, self.Q_comp_mat, self.Q_comp_mat) # State uncertainty self.kf.R = np.eye(4)*6.25 # Method: Used to predict and update the next state for a bounding box