Python autograd.numpy.linspace() Examples
The following are 30
code examples of autograd.numpy.linspace().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
autograd.numpy
, or try the search function
.
Example #1
Source File: bayesian_neural_net.py From autograd with MIT License | 6 votes |
def callback(params, t, g): print("Iteration {} lower bound {}".format(t, -objective(params, t))) # Sample functions from posterior. rs = npr.RandomState(0) mean, log_std = unpack_params(params) #rs = npr.RandomState(0) sample_weights = rs.randn(10, num_weights) * np.exp(log_std) + mean plot_inputs = np.linspace(-8, 8, num=400) outputs = predictions(sample_weights, np.expand_dims(plot_inputs, 1)) # Plot data and functions. plt.cla() ax.plot(inputs.ravel(), targets.ravel(), 'bx') ax.plot(plot_inputs, outputs[:, :, 0].T) ax.set_ylim([-2, 3]) plt.draw() plt.pause(1.0/60.0) # Initialize variational parameters
Example #2
Source File: deep_gaussian_process.py From autograd with MIT License | 6 votes |
def callback(params): print("Log marginal likelihood {}".format(log_marginal_likelihood(params))) # Show posterior marginals. plot_xs = np.reshape(np.linspace(-5, 5, 300), (300,1)) pred_mean, pred_cov = combined_predict_fun(params, X, y, plot_xs) plot_gp(ax_end_to_end, X, y, pred_mean, pred_cov, plot_xs) ax_end_to_end.set_title("X to y") layer1_params, layer2_params, hiddens = unpack_all_params(params) h_star_mean, h_star_cov = predict_layer_funcs[0](layer1_params, X, hiddens, plot_xs) y_star_mean, y_star_cov = predict_layer_funcs[0](layer2_params, np.atleast_2d(hiddens).T, y, plot_xs) plot_gp(ax_x_to_h, X, hiddens, h_star_mean, h_star_cov, plot_xs) ax_x_to_h.set_title("X to hiddens") plot_gp(ax_h_to_y, np.atleast_2d(hiddens).T, y, y_star_mean, y_star_cov, plot_xs) ax_h_to_y.set_title("hiddens to y") plt.draw() plt.pause(1.0/60.0) # Initialize covariance parameters and hiddens.
Example #3
Source File: zdt.py From pymoo with Apache License 2.0 | 6 votes |
def _calc_pareto_front(self, n_points=100, flatten=True): regions = [[0, 0.0830015349], [0.182228780, 0.2577623634], [0.4093136748, 0.4538821041], [0.6183967944, 0.6525117038], [0.8233317983, 0.8518328654]] pf = [] for r in regions: x1 = anp.linspace(r[0], r[1], int(n_points / len(regions))) x2 = 1 - anp.sqrt(x1) - x1 * anp.sin(10 * anp.pi * x1) pf.append(anp.array([x1, x2]).T) if not flatten: pf = anp.concatenate([pf[None,...] for pf in pf]) else: pf = anp.row_stack(pf) return pf
Example #4
Source File: kafnets.py From kernel-activation-functions with MIT License | 6 votes |
def init_kaf_nn(layer_sizes, scale=0.01, rs=np.random.RandomState(0), dict_size=20, boundary=3.0): """ Initialize the parameters of a KAF feedforward network. - dict_size: the size of the dictionary for every neuron. - boundary: the boundary for the activation functions. """ # Initialize the dictionary D = np.linspace(-boundary, boundary, dict_size).reshape(-1, 1) # Rule of thumb for gamma interval = D[1,0] - D[0,0]; gamma = 0.5/np.square(2*interval) D = D.reshape(1, 1, -1) # Initialize a list of parameters for the layer w = [(rs.randn(insize, outsize) * scale, # Weight matrix rs.randn(outsize) * scale, # Bias vector rs.randn(1, outsize, dict_size) * 0.5) # Mixing coefficients for insize, outsize in zip(layer_sizes[:-1], layer_sizes[1:])] return w, (D, gamma)
Example #5
Source File: run_synthetic_example.py From ParetoMTL with MIT License | 6 votes |
def create_pf(): ps = np.linspace(-1/np.sqrt(2),1/np.sqrt(2)) pf = [] for x1 in ps: #generate solutions on the Pareto front: x = np.array([x1,x1]) f, f_dx = concave_fun_eval(x) pf.append(f) pf = np.array(pf) return pf ### optimization method ###
Example #6
Source File: methods.py From tf-quant-finance with Apache License 2.0 | 6 votes |
def _build_errors_df(name_errors, label): """Helper to build errors DataFrame.""" series = [] percentiles = np.linspace(0, 100, 21) index = percentiles / 100 for name, errors in name_errors: series.append(pd.Series( np.nanpercentile(errors, q=percentiles), index=index, name=name)) df = pd.concat(series, axis=1) df.columns.name = 'derivative' df.index.name = 'quantile' df = df.stack().rename('error').reset_index() with np.errstate(divide='ignore'): df['log(error)'] = np.log(df['error']) if label is not None: df['label'] = label return df
Example #7
Source File: plot.py From kernel-gof with MIT License | 5 votes |
def box_meshgrid(func, xbound, ybound, nx=50, ny=50): """ Form a meshed grid (to be used with a contour plot) on a box specified by xbound, ybound. Evaluate the grid with [func]: (n x 2) -> n. - xbound: a tuple (xmin, xmax) - ybound: a tuple (ymin, ymax) - nx: number of points to evluate in the x direction return XX, YY, ZZ where XX is a 2D nd-array of size nx x ny """ # form a test location grid to try minx, maxx = xbound miny, maxy = ybound loc0_cands = np.linspace(minx, maxx, nx) loc1_cands = np.linspace(miny, maxy, ny) lloc0, lloc1 = np.meshgrid(loc0_cands, loc1_cands) # nd1 x nd0 x 2 loc3d = np.dstack((lloc0, lloc1)) # #candidates x 2 all_loc2s = np.reshape(loc3d, (-1, 2) ) # evaluate the function func_grid = func(all_loc2s) func_grid = np.reshape(func_grid, (ny, nx)) assert lloc0.shape[0] == ny assert lloc0.shape[1] == nx assert np.all(lloc0.shape == lloc1.shape) return lloc0, lloc1, func_grid
Example #8
Source File: neural_net_regression.py From autograd with MIT License | 5 votes |
def callback(params, t, g): print("Iteration {} log likelihood {}".format(t, -objective(params, t))) # Plot data and functions. plt.cla() ax.plot(inputs.ravel(), targets.ravel(), 'bx', ms=12) plot_inputs = np.reshape(np.linspace(-7, 7, num=300), (300,1)) outputs = nn_predict(params, plot_inputs) ax.plot(plot_inputs, outputs, 'r', lw=3) ax.set_ylim([-1, 1]) plt.draw() plt.pause(1.0/60.0)
Example #9
Source File: test_scipy.py From autograd with MIT License | 5 votes |
def test_odeint(): combo_check(integrate.odeint, [1,2,3])([func], [R(3)], [np.linspace(0.1, 0.2, 4)], [(R(3), R(3))]) ## Linalg
Example #10
Source File: test_numpy.py From autograd with MIT License | 5 votes |
def test_linspace(): for num in [0, 1, 5]: def fun(x, y): return np.linspace(x, y, num) check_grads(fun)(1.2, 3.4) check_grads(fun)(1.2, -3.4) check_grads(fun)(1.2, 1.2)
Example #11
Source File: run_synthetic_example.py From ParetoMTL with MIT License | 5 votes |
def circle_points(r, n): # generate evenly distributed preference vector circles = [] for r, n in zip(r, n): t = np.linspace(0, 0.5 * np.pi, n) x = r * np.cos(t) y = r * np.sin(t) circles.append(np.c_[x, y]) return circles ### the synthetic multi-objective problem ###
Example #12
Source File: ex2_prob_params.py From kernel-gof with MIT License | 5 votes |
def job_mmd_opt(p, data_source, tr, te, r): """ MMD test of Gretton et al., 2012 used as a goodness-of-fit test. Require the ability to sample from p i.e., the UnnormalizedDensity p has to be able to return a non-None from get_datasource() With optimization. Gaussian kernel. """ data = tr + te X = data.data() with util.ContextTimer() as t: # median heuristic pds = p.get_datasource() datY = pds.sample(data.sample_size(), seed=r+294) Y = datY.data() XY = np.vstack((X, Y)) med = util.meddistance(XY, subsample=1000) # Construct a list of kernels to try based on multiples of the median # heuristic #list_gwidth = np.hstack( (np.linspace(20, 40, 10), (med**2) # *(2.0**np.linspace(-2, 2, 20) ) ) ) list_gwidth = (med**2)*(2.0**np.linspace(-3, 3, 30) ) list_gwidth.sort() candidate_kernels = [kernel.KGauss(gw2) for gw2 in list_gwidth] mmd_opt = mgof.QuadMMDGofOpt(p, n_permute=300, alpha=alpha, seed=r+56) mmd_result = mmd_opt.perform_test(data, candidate_kernels=candidate_kernels, tr_proportion=tr_proportion, reg=1e-3) return { 'test_result': mmd_result, 'time_secs': t.secs} # Define our custom Job, which inherits from base class IndependentJob
Example #13
Source File: ex1_vary_n.py From kernel-gof with MIT License | 5 votes |
def job_mmd_opt(p, data_source, tr, te, r): """ MMD test of Gretton et al., 2012 used as a goodness-of-fit test. Require the ability to sample from p i.e., the UnnormalizedDensity p has to be able to return a non-None from get_datasource() With optimization. Gaussian kernel. """ data = tr + te X = data.data() with util.ContextTimer() as t: # median heuristic pds = p.get_datasource() datY = pds.sample(data.sample_size(), seed=r+294) Y = datY.data() XY = np.vstack((X, Y)) med = util.meddistance(XY, subsample=1000) # Construct a list of kernels to try based on multiples of the median # heuristic #list_gwidth = np.hstack( (np.linspace(20, 40, 10), (med**2) # *(2.0**np.linspace(-2, 2, 20) ) ) ) list_gwidth = (med**2)*(2.0**np.linspace(-4, 4, 30) ) list_gwidth.sort() candidate_kernels = [kernel.KGauss(gw2) for gw2 in list_gwidth] mmd_opt = mgof.QuadMMDGofOpt(p, n_permute=300, alpha=alpha, seed=r) mmd_result = mmd_opt.perform_test(data, candidate_kernels=candidate_kernels, tr_proportion=tr_proportion, reg=1e-3) return { 'test_result': mmd_result, 'time_secs': t.secs}
Example #14
Source File: neural_net_regression.py From autograd with MIT License | 5 votes |
def build_toy_dataset(n_data=80, noise_std=0.1): rs = npr.RandomState(0) inputs = np.concatenate([np.linspace(0, 3, num=n_data/2), np.linspace(6, 8, num=n_data/2)]) targets = np.cos(inputs) + rs.randn(n_data) * noise_std inputs = (inputs - 4.0) / 2.0 inputs = inputs[:, np.newaxis] targets = targets[:, np.newaxis] / 2.0 return inputs, targets
Example #15
Source File: goftest.py From kernel-gof with MIT License | 5 votes |
def optimize_auto_init(p, dat, J, **ops): """ Optimize parameters by calling optimize_locs_widths(). Automatically initialize the test locations and the Gaussian width. Return optimized locations, Gaussian width, optimization info """ assert J>0 # Use grid search to initialize the gwidth X = dat.data() n_gwidth_cand = 5 gwidth_factors = 2.0**np.linspace(-3, 3, n_gwidth_cand) med2 = util.meddistance(X, 1000)**2 k = kernel.KGauss(med2*2) # fit a Gaussian to the data and draw to initialize V0 V0 = util.fit_gaussian_draw(X, J, seed=829, reg=1e-6) list_gwidth = np.hstack( ( (med2)*gwidth_factors ) ) besti, objs = GaussFSSD.grid_search_gwidth(p, dat, V0, list_gwidth) gwidth = list_gwidth[besti] assert util.is_real_num(gwidth), 'gwidth not real. Was %s'%str(gwidth) assert gwidth > 0, 'gwidth not positive. Was %.3g'%gwidth logging.info('After grid search, gwidth=%.3g'%gwidth) V_opt, gwidth_opt, info = GaussFSSD.optimize_locs_widths(p, dat, gwidth, V0, **ops) # set the width bounds #fac_min = 5e-2 #fac_max = 5e3 #gwidth_lb = fac_min*med2 #gwidth_ub = fac_max*med2 #gwidth_opt = max(gwidth_lb, min(gwidth_opt, gwidth_ub)) return V_opt, gwidth_opt, info
Example #16
Source File: goftest.py From kernel-gof with MIT License | 5 votes |
def power_criterion(p, dat, b, c, test_locs, reg=1e-2): k = kernel.KIMQ(b=b, c=c) return FSSD.power_criterion(p, dat, k, test_locs, reg) #@staticmethod #def optimize_auto_init(p, dat, J, **ops): # """ # Optimize parameters by calling optimize_locs_widths(). Automatically # initialize the test locations and the Gaussian width. # Return optimized locations, Gaussian width, optimization info # """ # assert J>0 # # Use grid search to initialize the gwidth # X = dat.data() # n_gwidth_cand = 5 # gwidth_factors = 2.0**np.linspace(-3, 3, n_gwidth_cand) # med2 = util.meddistance(X, 1000)**2 # k = kernel.KGauss(med2*2) # # fit a Gaussian to the data and draw to initialize V0 # V0 = util.fit_gaussian_draw(X, J, seed=829, reg=1e-6) # list_gwidth = np.hstack( ( (med2)*gwidth_factors ) ) # besti, objs = GaussFSSD.grid_search_gwidth(p, dat, V0, list_gwidth) # gwidth = list_gwidth[besti] # assert util.is_real_num(gwidth), 'gwidth not real. Was %s'%str(gwidth) # assert gwidth > 0, 'gwidth not positive. Was %.3g'%gwidth # logging.info('After grid search, gwidth=%.3g'%gwidth) # V_opt, gwidth_opt, info = GaussFSSD.optimize_locs_widths(p, dat, # gwidth, V0, **ops) # # set the width bounds # #fac_min = 5e-2 # #fac_max = 5e3 # #gwidth_lb = fac_min*med2 # #gwidth_ub = fac_max*med2 # #gwidth_opt = max(gwidth_lb, min(gwidth_opt, gwidth_ub)) # return V_opt, gwidth_opt, info
Example #17
Source File: bnh.py From pymop with Apache License 2.0 | 5 votes |
def _calc_pareto_front(self, n_pareto_points=100): x1 = anp.linspace(0, 5, n_pareto_points) x2 = anp.copy(x1) x2[x1 >= 3] = 3 return anp.vstack((4 * anp.square(x1) + 4 * anp.square(x2), anp.square(x1 - 5) + anp.square(x2 - 5))).T
Example #18
Source File: zdt.py From pymop with Apache License 2.0 | 5 votes |
def _calc_pareto_front(self, n_pareto_points=100): x = anp.linspace(0, 1, n_pareto_points) return anp.array([x, 1 - anp.sqrt(x)]).T
Example #19
Source File: zdt.py From pymop with Apache License 2.0 | 5 votes |
def _calc_pareto_front(self, n_pareto_points=100): x = anp.linspace(0, 1, n_pareto_points) return anp.array([x, 1 - anp.power(x, 2)]).T
Example #20
Source File: zdt.py From pymop with Apache License 2.0 | 5 votes |
def _calc_pareto_front(self, n_pareto_points=100): regions = [[0, 0.0830015349], [0.182228780, 0.2577623634], [0.4093136748, 0.4538821041], [0.6183967944, 0.6525117038], [0.8233317983, 0.8518328654]] pareto_front = anp.array([]).reshape((-1, 2)) for r in regions: x1 = anp.linspace(r[0], r[1], int(n_pareto_points / len(regions))) x2 = 1 - anp.sqrt(x1) - x1 * anp.sin(10 * anp.pi * x1) pareto_front = anp.concatenate((pareto_front, anp.array([x1, x2]).T), axis=0) return pareto_front
Example #21
Source File: zdt.py From pymop with Apache License 2.0 | 5 votes |
def _calc_pareto_front(self, n_pareto_points=100): x = anp.linspace(0, 1, n_pareto_points) return anp.array([x, 1 - anp.sqrt(x)]).T
Example #22
Source File: ica.py From autograd with MIT License | 5 votes |
def color_scatter(ax, xs, ys): colors = cm.rainbow(np.linspace(0, 1, len(ys))) for x, y, c in zip(xs, ys, colors): ax.scatter(x, y, color=c)
Example #23
Source File: bnh.py From pymoo with Apache License 2.0 | 5 votes |
def _calc_pareto_front(self, n_points=100): x1 = anp.linspace(0, 5, n_points) x2 = anp.linspace(0, 5, n_points) x2[x1 >= 3] = 3 X = anp.column_stack([x1, x2]) return self.evaluate(X, return_values_of=["F"])
Example #24
Source File: zdt.py From pymoo with Apache License 2.0 | 5 votes |
def _calc_pareto_front(self, n_pareto_points=100): x = anp.linspace(0, 1, n_pareto_points) return anp.array([x, 1 - anp.sqrt(x)]).T
Example #25
Source File: zdt.py From pymoo with Apache License 2.0 | 5 votes |
def _calc_pareto_front(self, n_pareto_points=100): x = anp.linspace(0, 1, n_pareto_points) return anp.array([x, 1 - anp.power(x, 2)]).T
Example #26
Source File: zdt.py From pymoo with Apache License 2.0 | 5 votes |
def _calc_pareto_front(self, n_pareto_points=100): x = 1 + anp.linspace(0, 1, n_pareto_points) * 30 pf = anp.column_stack([x, (self.m-1) / x]) if self.normalize: pf = normalize(pf) return pf
Example #27
Source File: zdt.py From pymoo with Apache License 2.0 | 5 votes |
def _calc_pareto_front(self, n_pareto_points=100): x = anp.linspace(0.2807753191, 1, n_pareto_points) return anp.array([x, 1 - anp.power(x, 2)]).T
Example #28
Source File: geometry.py From AeroSandbox with MIT License | 5 votes |
def cosspace(min=0, max=1, n_points=50): mean = (max + min) / 2 amp = (max - min) / 2 return mean + amp * np.cos(np.linspace(np.pi, 0, n_points))
Example #29
Source File: geometry.py From AeroSandbox with MIT License | 5 votes |
def linspace_3D(start, stop, n_points): # Given two points (a start and an end), returns an interpolated array of points on the line between the two. # Inputs: # * start: 3D coordinates expressed as a 1D numpy array, shape==(3). # * end: 3D coordinates expressed as a 1D numpy array, shape==(3). # * n_points: Number of points to be interpolated (including endpoints), a scalar. # Outputs: # * points: Array of 3D coordinates expressed as a 2D numpy array, shape==(N, 3) x = np.linspace(start[0], stop[0], n_points) y = np.linspace(start[1], stop[1], n_points) z = np.linspace(start[2], stop[2], n_points) points = np.column_stack((x, y, z)) return points
Example #30
Source File: methods.py From tf-quant-finance with Apache License 2.0 | 5 votes |
def grid(num, ndim, large=False): """Build a uniform grid with num points along each of ndim axes.""" if not large: _check_not_too_large(np.power(num, ndim) * ndim) x = np.linspace(0, 1, num, dtype='float64') w = 1 / (num - 1) points = np.stack( np.meshgrid(*[x for _ in range(ndim)], indexing='ij'), axis=-1) return points, w