Python __builtin__.all() Examples
The following are 24
code examples of __builtin__.all().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
__builtin__
, or try the search function
.
Example #1
Source File: numeric.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def load(file): """ Wrapper around cPickle.load which accepts either a file-like object or a filename. Note that the NumPy binary format is not based on pickle/cPickle anymore. For details on the preferred way of loading and saving files, see `load` and `save`. See Also -------- load, save """ if isinstance(file, type("")): file = open(file, "rb") return pickle.load(file) # These are all essentially abbreviations # These might wind up in a special abbreviations module
Example #2
Source File: numeric.py From keras-lambda with MIT License | 6 votes |
def load(file): """ Wrapper around cPickle.load which accepts either a file-like object or a filename. Note that the NumPy binary format is not based on pickle/cPickle anymore. For details on the preferred way of loading and saving files, see `load` and `save`. See Also -------- load, save """ if isinstance(file, type("")): file = open(file, "rb") return pickle.load(file) # These are all essentially abbreviations # These might wind up in a special abbreviations module
Example #3
Source File: fypp.py From fypp with BSD 2-Clause "Simplified" License | 6 votes |
def __init__(self, env=None): # Global scope self._globals = env if env is not None else {} # Local scope(s) self._locals = None self._locals_stack = [] # Variables which are references to entries in global scope self._globalrefs = None self._globalrefs_stack = [] # Current scope (globals + locals in all embedding and in current scope) self._scope = self._globals # Turn on restricted mode self._restrict_builtins()
Example #4
Source File: fypp.py From fypp with BSD 2-Clause "Simplified" License | 6 votes |
def __init__(self): # The tree, which should be built. self._tree = [] # List of all open constructs self._open_blocks = [] # Nodes to which the open blocks have to be appended when closed self._path = [] # Nr. of open blocks when file was opened. Used for checking whether all # blocks have been closed, when file processing finishes. self._nr_prev_blocks = [] # Current node, to which content should be added self._curnode = self._tree # Current file self._curfile = None
Example #5
Source File: compatibility.py From darkc0de-old-stuff with GNU General Public License v3.0 | 5 votes |
def all(items): return reduce(operator.__and__, items)
Example #6
Source File: numeric.py From keras-lambda with MIT License | 5 votes |
def array_equal(a1, a2): """ True if two arrays have the same shape and elements, False otherwise. Parameters ---------- a1, a2 : array_like Input arrays. Returns ------- b : bool Returns True if the arrays are equal. See Also -------- allclose: Returns True if two arrays are element-wise equal within a tolerance. array_equiv: Returns True if input arrays are shape consistent and all elements equal. Examples -------- >>> np.array_equal([1, 2], [1, 2]) True >>> np.array_equal(np.array([1, 2]), np.array([1, 2])) True >>> np.array_equal([1, 2], [1, 2, 3]) False >>> np.array_equal([1, 2], [1, 4]) False """ try: a1, a2 = asarray(a1), asarray(a2) except: return False if a1.shape != a2.shape: return False return bool(asarray(a1 == a2).all())
Example #7
Source File: numeric.py From keras-lambda with MIT License | 5 votes |
def identity(n, dtype=None): """ Return the identity array. The identity array is a square array with ones on the main diagonal. Parameters ---------- n : int Number of rows (and columns) in `n` x `n` output. dtype : data-type, optional Data-type of the output. Defaults to ``float``. Returns ------- out : ndarray `n` x `n` array with its main diagonal set to one, and all other elements 0. Examples -------- >>> np.identity(3) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) """ from numpy import eye return eye(n, dtype=dtype)
Example #8
Source File: numeric.py From keras-lambda with MIT License | 5 votes |
def _maketup(descr, val): dt = dtype(descr) # Place val in all scalar tuples: fields = dt.fields if fields is None: return val else: res = [_maketup(fields[name][0], val) for name in dt.names] return tuple(res)
Example #9
Source File: numeric.py From keras-lambda with MIT License | 5 votes |
def _validate_axis(axis, ndim, argname): try: axis = [operator.index(axis)] except TypeError: axis = list(axis) axis = [a + ndim if a < 0 else a for a in axis] if not builtins.all(0 <= a < ndim for a in axis): raise ValueError('invalid axis for this array in `%s` argument' % argname) if len(set(axis)) != len(axis): raise ValueError('repeated axis in `%s` argument' % argname) return axis
Example #10
Source File: compatibility.py From EasY_HaCk with Apache License 2.0 | 5 votes |
def all(items): return reduce(operator.__and__, items) # --- test if interpreter supports yield keyword ---
Example #11
Source File: compatibility.py From EasY_HaCk with Apache License 2.0 | 5 votes |
def any(items): for item in items: if item: return True return False # ---all() from Python 2.5 ---
Example #12
Source File: numeric.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _validate_axis(axis, ndim, argname): try: axis = [operator.index(axis)] except TypeError: axis = list(axis) axis = [a + ndim if a < 0 else a for a in axis] if not builtins.all(0 <= a < ndim for a in axis): raise ValueError('invalid axis for this array in `%s` argument' % argname) if len(set(axis)) != len(axis): raise ValueError('repeated axis in `%s` argument' % argname) return axis
Example #13
Source File: compatibility.py From darkc0de-old-stuff with GNU General Public License v3.0 | 5 votes |
def any(items): for item in items: if item: return True return False # ---all() from Python 2.5 ---
Example #14
Source File: compatibility.py From ITWSV with MIT License | 5 votes |
def all(items): return reduce(operator.__and__, items) # --- test if interpreter supports yield keyword ---
Example #15
Source File: compatibility.py From ITWSV with MIT License | 5 votes |
def any(items): for item in items: if item: return True return False # ---all() from Python 2.5 ---
Example #16
Source File: compatibility.py From Yuki-Chan-The-Auto-Pentest with MIT License | 5 votes |
def all(items): return reduce(operator.__and__, items) # --- test if interpreter supports yield keyword ---
Example #17
Source File: compatibility.py From Yuki-Chan-The-Auto-Pentest with MIT License | 5 votes |
def any(items): for item in items: if item: return True return False # ---all() from Python 2.5 ---
Example #18
Source File: numeric.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def array_equal(a1, a2): """ True if two arrays have the same shape and elements, False otherwise. Parameters ---------- a1, a2 : array_like Input arrays. Returns ------- b : bool Returns True if the arrays are equal. See Also -------- allclose: Returns True if two arrays are element-wise equal within a tolerance. array_equiv: Returns True if input arrays are shape consistent and all elements equal. Examples -------- >>> np.array_equal([1, 2], [1, 2]) True >>> np.array_equal(np.array([1, 2]), np.array([1, 2])) True >>> np.array_equal([1, 2], [1, 2, 3]) False >>> np.array_equal([1, 2], [1, 4]) False """ try: a1, a2 = asarray(a1), asarray(a2) except: return False if a1.shape != a2.shape: return False return bool(asarray(a1 == a2).all())
Example #19
Source File: numeric.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def identity(n, dtype=None): """ Return the identity array. The identity array is a square array with ones on the main diagonal. Parameters ---------- n : int Number of rows (and columns) in `n` x `n` output. dtype : data-type, optional Data-type of the output. Defaults to ``float``. Returns ------- out : ndarray `n` x `n` array with its main diagonal set to one, and all other elements 0. Examples -------- >>> np.identity(3) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) """ from numpy import eye return eye(n, dtype=dtype)
Example #20
Source File: numeric.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _maketup(descr, val): dt = dtype(descr) # Place val in all scalar tuples: fields = dt.fields if fields is None: return val else: res = [_maketup(fields[name][0], val) for name in dt.names] return tuple(res)
Example #21
Source File: numeric.py From auto-alt-text-lambda-api with MIT License | 4 votes |
def geterrcall(): """ Return the current callback function used on floating-point errors. When the error handling for a floating-point error (one of "divide", "over", "under", or "invalid") is set to 'call' or 'log', the function that is called or the log instance that is written to is returned by `geterrcall`. This function or log instance has been set with `seterrcall`. Returns ------- errobj : callable, log instance or None The current error handler. If no handler was set through `seterrcall`, ``None`` is returned. See Also -------- seterrcall, seterr, geterr Notes ----- For complete documentation of the types of floating-point exceptions and treatment options, see `seterr`. Examples -------- >>> np.geterrcall() # we did not yet set a handler, returns None >>> oldsettings = np.seterr(all='call') >>> def err_handler(type, flag): ... print("Floating point error (%s), with flag %s" % (type, flag)) >>> oldhandler = np.seterrcall(err_handler) >>> np.array([1, 2, 3]) / 0.0 Floating point error (divide by zero), with flag 1 array([ Inf, Inf, Inf]) >>> cur_handler = np.geterrcall() >>> cur_handler is err_handler True """ return umath.geterrobj()[2]
Example #22
Source File: numeric.py From auto-alt-text-lambda-api with MIT License | 4 votes |
def geterr(): """ Get the current way of handling floating-point errors. Returns ------- res : dict A dictionary with keys "divide", "over", "under", and "invalid", whose values are from the strings "ignore", "print", "log", "warn", "raise", and "call". The keys represent possible floating-point exceptions, and the values define how these exceptions are handled. See Also -------- geterrcall, seterr, seterrcall Notes ----- For complete documentation of the types of floating-point exceptions and treatment options, see `seterr`. Examples -------- >>> np.geterr() {'over': 'warn', 'divide': 'warn', 'invalid': 'warn', 'under': 'ignore'} >>> np.arange(3.) / np.arange(3.) array([ NaN, 1., 1.]) >>> oldsettings = np.seterr(all='warn', over='raise') >>> np.geterr() {'over': 'raise', 'divide': 'warn', 'invalid': 'warn', 'under': 'warn'} >>> np.arange(3.) / np.arange(3.) __main__:1: RuntimeWarning: invalid value encountered in divide array([ NaN, 1., 1.]) """ maskvalue = umath.geterrobj()[1] mask = 7 res = {} val = (maskvalue >> SHIFT_DIVIDEBYZERO) & mask res['divide'] = _errdict_rev[val] val = (maskvalue >> SHIFT_OVERFLOW) & mask res['over'] = _errdict_rev[val] val = (maskvalue >> SHIFT_UNDERFLOW) & mask res['under'] = _errdict_rev[val] val = (maskvalue >> SHIFT_INVALID) & mask res['invalid'] = _errdict_rev[val] return res
Example #23
Source File: numeric.py From keras-lambda with MIT License | 4 votes |
def geterr(): """ Get the current way of handling floating-point errors. Returns ------- res : dict A dictionary with keys "divide", "over", "under", and "invalid", whose values are from the strings "ignore", "print", "log", "warn", "raise", and "call". The keys represent possible floating-point exceptions, and the values define how these exceptions are handled. See Also -------- geterrcall, seterr, seterrcall Notes ----- For complete documentation of the types of floating-point exceptions and treatment options, see `seterr`. Examples -------- >>> np.geterr() {'over': 'warn', 'divide': 'warn', 'invalid': 'warn', 'under': 'ignore'} >>> np.arange(3.) / np.arange(3.) array([ NaN, 1., 1.]) >>> oldsettings = np.seterr(all='warn', over='raise') >>> np.geterr() {'over': 'raise', 'divide': 'warn', 'invalid': 'warn', 'under': 'warn'} >>> np.arange(3.) / np.arange(3.) __main__:1: RuntimeWarning: invalid value encountered in divide array([ NaN, 1., 1.]) """ maskvalue = umath.geterrobj()[1] mask = 7 res = {} val = (maskvalue >> SHIFT_DIVIDEBYZERO) & mask res['divide'] = _errdict_rev[val] val = (maskvalue >> SHIFT_OVERFLOW) & mask res['over'] = _errdict_rev[val] val = (maskvalue >> SHIFT_UNDERFLOW) & mask res['under'] = _errdict_rev[val] val = (maskvalue >> SHIFT_INVALID) & mask res['invalid'] = _errdict_rev[val] return res
Example #24
Source File: numeric.py From keras-lambda with MIT License | 4 votes |
def geterrcall(): """ Return the current callback function used on floating-point errors. When the error handling for a floating-point error (one of "divide", "over", "under", or "invalid") is set to 'call' or 'log', the function that is called or the log instance that is written to is returned by `geterrcall`. This function or log instance has been set with `seterrcall`. Returns ------- errobj : callable, log instance or None The current error handler. If no handler was set through `seterrcall`, ``None`` is returned. See Also -------- seterrcall, seterr, geterr Notes ----- For complete documentation of the types of floating-point exceptions and treatment options, see `seterr`. Examples -------- >>> np.geterrcall() # we did not yet set a handler, returns None >>> oldsettings = np.seterr(all='call') >>> def err_handler(type, flag): ... print("Floating point error (%s), with flag %s" % (type, flag)) >>> oldhandler = np.seterrcall(err_handler) >>> np.array([1, 2, 3]) / 0.0 Floating point error (divide by zero), with flag 1 array([ Inf, Inf, Inf]) >>> cur_handler = np.geterrcall() >>> cur_handler is err_handler True """ return umath.geterrobj()[2]