Python chainer.initializers.HeNormal() Examples

The following are 30 code examples of chainer.initializers.HeNormal(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module chainer.initializers , or try the search function .
Example #1
Source File: Resnet_with_loss.py    From chainer-compiler with MIT License 6 votes vote down vote up
def __init__(self, in_size, ch, out_size, stride=2, groups=1):
        super(BottleNeckA, self).__init__()
        initialW = initializers.HeNormal()

        with self.init_scope():
            self.conv1 = L.Convolution2D(
                in_size, ch, 1, stride, 0, initialW=initialW, nobias=True)
            self.bn1 = L.BatchNormalization(ch)
            self.conv2 = L.Convolution2D(
                ch, ch, 3, 1, 1, initialW=initialW, nobias=True,
                groups=groups)
            self.bn2 = L.BatchNormalization(ch)
            self.conv3 = L.Convolution2D(
                ch, out_size, 1, 1, 0, initialW=initialW, nobias=True)
            self.bn3 = L.BatchNormalization(out_size)

            self.conv4 = L.Convolution2D(
                in_size, out_size, 1, stride, 0,
                initialW=initialW, nobias=True)
            self.bn4 = L.BatchNormalization(out_size) 
Example #2
Source File: resnet50.py    From chainer with MIT License 6 votes vote down vote up
def __init__(self, in_size, ch, out_size, stride=2, groups=1):
        super(BottleNeckA, self).__init__()
        initialW = initializers.HeNormal()

        with self.init_scope():
            self.conv1 = L.Convolution2D(
                in_size, ch, 1, stride, 0, initialW=initialW, nobias=True)
            self.bn1 = L.BatchNormalization(ch)
            self.conv2 = L.Convolution2D(
                ch, ch, 3, 1, 1, initialW=initialW, nobias=True,
                groups=groups)
            self.bn2 = L.BatchNormalization(ch)
            self.conv3 = L.Convolution2D(
                ch, out_size, 1, 1, 0, initialW=initialW, nobias=True)
            self.bn3 = L.BatchNormalization(out_size)

            self.conv4 = L.Convolution2D(
                in_size, out_size, 1, stride, 0,
                initialW=initialW, nobias=True)
            self.bn4 = L.BatchNormalization(out_size) 
Example #3
Source File: simplified_dropconnect.py    From chainer with MIT License 6 votes vote down vote up
def __init__(self, in_size, out_size, ratio=.5, nobias=False,
                 initialW=None, initial_bias=None):
        super(SimplifiedDropconnect, self).__init__()

        self.out_size = out_size
        self.ratio = ratio

        if initialW is None:
            initialW = initializers.HeNormal(1. / numpy.sqrt(2))

        with self.init_scope():
            W_initializer = initializers._get_initializer(initialW)
            self.W = variable.Parameter(W_initializer)
            if in_size is not None:
                self._initialize_params(in_size)

            if nobias:
                self.b = None
            else:
                if initial_bias is None:
                    initial_bias = initializers.Constant(0)
                bias_initializer = initializers._get_initializer(initial_bias)
                self.b = variable.Parameter(bias_initializer, out_size) 
Example #4
Source File: alex.py    From chainer-compiler with MIT License 6 votes vote down vote up
def __init__(self):
        chainer.Chain.__init__(self)
        self.dtype = np.float16
        W = initializers.HeNormal(1 / np.sqrt(2), self.dtype)
        bias = initializers.Zero(self.dtype)

        with self.init_scope():
            self.conv1 = L.Convolution2D(None, 96, 11, stride=4,
                                         initialW=W, initial_bias=bias)
            self.conv2 = L.Convolution2D(None, 256, 5, pad=2,
                                         initialW=W, initial_bias=bias)
            self.conv3 = L.Convolution2D(None, 384, 3, pad=1,
                                         initialW=W, initial_bias=bias)
            self.conv4 = L.Convolution2D(None, 384, 3, pad=1,
                                         initialW=W, initial_bias=bias)
            self.conv5 = L.Convolution2D(None, 256, 3, pad=1,
                                         initialW=W, initial_bias=bias)
            self.fc6 = L.Linear(None, 4096, initialW=W, initial_bias=bias)
            self.fc7 = L.Linear(None, 4096, initialW=W, initial_bias=bias)
            self.fc8 = L.Linear(None, 1000, initialW=W, initial_bias=bias) 
Example #5
Source File: Resnet_with_loss.py    From chainer-compiler with MIT License 6 votes vote down vote up
def __init__(self, in_size, ch, out_size, stride=2, groups=1):
        super(BottleNeckA, self).__init__()
        initialW = initializers.HeNormal()

        with self.init_scope():
            self.conv1 = L.Convolution2D(
                in_size, ch, 1, stride, 0, initialW=initialW, nobias=True)
            self.bn1 = L.BatchNormalization(ch)
            self.conv2 = L.Convolution2D(
                ch, ch, 3, 1, 1, initialW=initialW, nobias=True,
                groups=groups)
            self.bn2 = L.BatchNormalization(ch)
            self.conv3 = L.Convolution2D(
                ch, out_size, 1, 1, 0, initialW=initialW, nobias=True)
            self.bn3 = L.BatchNormalization(out_size)

            self.conv4 = L.Convolution2D(
                in_size, out_size, 1, stride, 0,
                initialW=initialW, nobias=True)
            self.bn4 = L.BatchNormalization(out_size) 
Example #6
Source File: resnet50.py    From chainer-compiler with MIT License 6 votes vote down vote up
def __init__(self, in_size, ch, out_size, stride=2, groups=1):
        super(BottleNeckA, self).__init__()
        initialW = initializers.HeNormal()

        with self.init_scope():
            self.conv1 = L.Convolution2D(
                in_size, ch, 1, stride, 0, initialW=initialW, nobias=True)
            self.bn1 = L.BatchNormalization(ch)
            self.conv2 = L.Convolution2D(
                ch, ch, 3, 1, 1, initialW=initialW, nobias=True,
                groups=groups)
            self.bn2 = L.BatchNormalization(ch)
            self.conv3 = L.Convolution2D(
                ch, out_size, 1, 1, 0, initialW=initialW, nobias=True)
            self.bn3 = L.BatchNormalization(out_size)

            self.conv4 = L.Convolution2D(
                in_size, out_size, 1, stride, 0,
                initialW=initialW, nobias=True)
            self.bn4 = L.BatchNormalization(out_size) 
Example #7
Source File: resnet50.py    From chainer with MIT License 6 votes vote down vote up
def __init__(self, in_size, ch, out_size, stride=2):
        super(BottleNeckA, self).__init__()
        initialW = initializers.HeNormal()

        with self.init_scope():
            self.conv1 = L.Convolution2D(
                in_size, ch, 1, stride, 0, initialW=initialW, nobias=True)
            self.bn1 = L.BatchNormalization(ch)
            self.conv2 = L.Convolution2D(
                ch, ch, 3, 1, 1, initialW=initialW, nobias=True)
            self.bn2 = L.BatchNormalization(ch)
            self.conv3 = L.Convolution2D(
                ch, out_size, 1, 1, 0, initialW=initialW, nobias=True)
            self.bn3 = L.BatchNormalization(out_size)

            self.conv4 = L.Convolution2D(
                in_size, out_size, 1, stride, 0,
                initialW=initialW, nobias=True)
            self.bn4 = L.BatchNormalization(out_size) 
Example #8
Source File: test_multiprocess_parallel_updater.py    From chainer with MIT License 5 votes vote down vote up
def __init__(self, dtype=numpy.float32):
        super(SimpleNet, self).__init__()
        self.dtype = dtype
        W = initializers.HeNormal(1 / numpy.sqrt(2), self.dtype)
        bias = initializers.Zero(self.dtype)
        with self.init_scope():
            self.conv = chainer.links.Convolution2D(2, 2, 3, initialW=W,
                                                    initial_bias=bias)
            self.fc = chainer.links.Linear(18, 2, initialW=W,
                                           initial_bias=bias)
        self.train = True 
Example #9
Source File: resnet50.py    From chainer with MIT License 5 votes vote down vote up
def __init__(self):
        super(ResNet50_Nhwc, self).__init__()
        with self.init_scope():
            self.conv1 = L.Convolution2D(
                3, 64, 7, 2, 3, initialW=initializers.HeNormal())
            self.bn1 = L.BatchNormalization(64)
            with chainer.using_config('compute_mode', 'cudnn_fast'):
                self.res2 = Block(3, 64, 64, 256, 1)
                self.res3 = Block(4, 256, 128, 512)
                self.res4 = Block(6, 512, 256, 1024)
                self.res5 = Block(3, 1024, 512, 2048)
            self.fc = L.Linear(2048, 1000) 
Example #10
Source File: resnext50.py    From chainer with MIT License 5 votes vote down vote up
def __init__(self, in_size, ch, groups=1):
        super(BottleNeckB, self).__init__()
        initialW = initializers.HeNormal()

        with self.init_scope():
            self.conv1 = L.Convolution2D(
                in_size, ch, 1, 1, 0, initialW=initialW, nobias=True)
            self.bn1 = L.BatchNormalization(ch)
            self.conv2 = L.Convolution2D(
                ch, ch, 3, 1, 1, initialW=initialW, nobias=True,
                groups=groups)
            self.bn2 = L.BatchNormalization(ch)
            self.conv3 = L.Convolution2D(
                ch, in_size, 1, 1, 0, initialW=initialW, nobias=True)
            self.bn3 = L.BatchNormalization(in_size) 
Example #11
Source File: resnext50.py    From chainer with MIT License 5 votes vote down vote up
def __init__(self):
        super(ResNeXt50, self).__init__()
        with self.init_scope():
            self.conv1 = L.Convolution2D(
                3, 64, 7, 2, 3, initialW=initializers.HeNormal())
            self.bn1 = L.BatchNormalization(64)
            self.res2 = Block(3, 64, 128, 256, 1, groups=32)
            self.res3 = Block(4, 256, 256, 512, groups=32)
            self.res4 = Block(6, 512, 512, 1024, groups=32)
            self.res5 = Block(3, 1024, 1024, 2048, groups=32)
            self.fc = L.Linear(2048, 1000) 
Example #12
Source File: nin.py    From chainer with MIT License 5 votes vote down vote up
def __init__(self):
        super(NIN, self).__init__()
        conv_init = I.HeNormal()  # MSRA scaling

        with self.init_scope():
            self.mlpconv1 = L.MLPConvolution2D(
                None, (96, 96, 96), 11, stride=4, conv_init=conv_init)
            self.mlpconv2 = L.MLPConvolution2D(
                None, (256, 256, 256), 5, pad=2, conv_init=conv_init)
            self.mlpconv3 = L.MLPConvolution2D(
                None, (384, 384, 384), 3, pad=1, conv_init=conv_init)
            self.mlpconv4 = L.MLPConvolution2D(
                None, (1024, 1024, 1000), 3, pad=1, conv_init=conv_init) 
Example #13
Source File: resnet50.py    From chainer with MIT License 5 votes vote down vote up
def __init__(self, in_size, ch):
        super(BottleNeckB, self).__init__()
        initialW = initializers.HeNormal()

        with self.init_scope():
            self.conv1 = L.Convolution2D(
                in_size, ch, 1, 1, 0, initialW=initialW, nobias=True)
            self.bn1 = L.BatchNormalization(ch)
            self.conv2 = L.Convolution2D(
                ch, ch, 3, 1, 1, initialW=initialW, nobias=True)
            self.bn2 = L.BatchNormalization(ch)
            self.conv3 = L.Convolution2D(
                ch, in_size, 1, 1, 0, initialW=initialW, nobias=True)
            self.bn3 = L.BatchNormalization(in_size) 
Example #14
Source File: mask_head.py    From chainercv with MIT License 5 votes vote down vote up
def __init__(self, n_class, scales):
        super(MaskHead, self).__init__()

        initialW = HeNormal(1, fan_option='fan_out')
        with self.init_scope():
            self.conv1 = Conv2DActiv(256, 3, pad=1, initialW=initialW)
            self.conv2 = Conv2DActiv(256, 3, pad=1, initialW=initialW)
            self.conv3 = Conv2DActiv(256, 3, pad=1, initialW=initialW)
            self.conv4 = Conv2DActiv(256, 3, pad=1, initialW=initialW)
            self.conv5 = L.Deconvolution2D(
                256, 2, pad=0, stride=2, initialW=initialW)
            self.seg = L.Convolution2D(n_class, 1, pad=0, initialW=initialW)

        self._n_class = n_class
        self._scales = scales 
Example #15
Source File: test_optimizers_by_linear_model.py    From chainer with MIT License 5 votes vote down vote up
def __init__(self, optimizer, dtype, use_placeholder):
        self.dtype = dtype
        weight = initializers.HeNormal(1 / numpy.sqrt(2), dtype)
        bias = initializers.Constant(0, dtype)
        in_size = None if use_placeholder else self.UNIT_NUM
        self.model = L.Linear(in_size, 2, initialW=weight, initial_bias=bias)

        self.optimizer = optimizer
        # true parameters
        self.w = numpy.random.uniform(
            -1, 1, (self.UNIT_NUM, 1)).astype(dtype)
        self.b = numpy.random.uniform(-1, 1, (1, )).astype(dtype) 
Example #16
Source File: depthwise_convolution_2d.py    From chainer with MIT License 5 votes vote down vote up
def __init__(self, in_channels, channel_multiplier, ksize, stride=1, pad=0,
                 nobias=False, initialW=None, initial_bias=None):
        super(DepthwiseConvolution2D, self).__init__()
        self.ksize = ksize
        self.stride = _pair(stride)
        self.pad = _pair(pad)
        self.channel_multiplier = channel_multiplier
        self.nobias = nobias

        if initialW is None:
            initialW = initializers.HeNormal(1. / numpy.sqrt(2))

        with self.init_scope():
            W_initializer = initializers._get_initializer(initialW)
            self.W = variable.Parameter(W_initializer)

            if nobias:
                self.b = None
            else:
                if initial_bias is None:
                    initial_bias = initializers.Constant(0)
                bias_initializer = initializers._get_initializer(initial_bias)
                self.b = variable.Parameter(bias_initializer)

        if in_channels is not None:
            self._initialize_params(in_channels) 
Example #17
Source File: se_resnet.py    From chainercv with MIT License 5 votes vote down vote up
def __init__(self, n_layer,
                 n_class=None,
                 pretrained_model=None,
                 mean=None, initialW=None, fc_kwargs={}):
        blocks = self._blocks[n_layer]

        param, path = utils.prepare_pretrained_model(
            {'n_class': n_class, 'mean': mean},
            pretrained_model, self._models[n_layer],
            {'n_class': 1000, 'mean': _imagenet_mean})
        self.mean = param['mean']

        if initialW is None:
            initialW = initializers.HeNormal(scale=1., fan_option='fan_out')
        if 'initialW' not in fc_kwargs:
            fc_kwargs['initialW'] = initializers.Normal(scale=0.01)
        if pretrained_model:
            # As a sampling process is time-consuming,
            # we employ a zero initializer for faster computation.
            initialW = initializers.constant.Zero()
            fc_kwargs['initialW'] = initializers.constant.Zero()
        kwargs = {
            'initialW': initialW, 'stride_first': True, 'add_seblock': True}

        super(SEResNet, self).__init__()
        with self.init_scope():
            self.conv1 = Conv2DBNActiv(None, 64, 7, 2, 3, nobias=True,
                                       initialW=initialW)
            self.pool1 = lambda x: F.max_pooling_2d(x, ksize=3, stride=2)
            self.res2 = ResBlock(blocks[0], None, 64, 256, 1, **kwargs)
            self.res3 = ResBlock(blocks[1], None, 128, 512, 2, **kwargs)
            self.res4 = ResBlock(blocks[2], None, 256, 1024, 2, **kwargs)
            self.res5 = ResBlock(blocks[3], None, 512, 2048, 2, **kwargs)
            self.pool5 = lambda x: F.average(x, axis=(2, 3))
            self.fc6 = L.Linear(None, param['n_class'], **fc_kwargs)
            self.prob = F.softmax

        if path:
            chainer.serializers.load_npz(path, self) 
Example #18
Source File: se_resnext.py    From chainercv with MIT License 5 votes vote down vote up
def __init__(self, n_layer,
                 n_class=None,
                 pretrained_model=None,
                 mean=None, initialW=None, fc_kwargs={}):
        blocks = self._blocks[n_layer]

        param, path = utils.prepare_pretrained_model(
            {'n_class': n_class, 'mean': mean},
            pretrained_model, self._models[n_layer],
            {'n_class': 1000, 'mean': _imagenet_mean})
        self.mean = param['mean']

        if initialW is None:
            initialW = initializers.HeNormal(scale=1., fan_option='fan_out')
        if 'initialW' not in fc_kwargs:
            fc_kwargs['initialW'] = initializers.Normal(scale=0.01)
        if pretrained_model:
            # As a sampling process is time-consuming,
            # we employ a zero initializer for faster computation.
            initialW = initializers.constant.Zero()
            fc_kwargs['initialW'] = initializers.constant.Zero()
        kwargs = {
            'groups': 32, 'initialW': initialW, 'stride_first': False,
            'add_seblock': True}

        super(SEResNeXt, self).__init__()
        with self.init_scope():
            self.conv1 = Conv2DBNActiv(None, 64, 7, 2, 3, nobias=True,
                                       initialW=initialW)
            self.pool1 = lambda x: F.max_pooling_2d(x, ksize=3, stride=2)
            self.res2 = ResBlock(blocks[0], None, 128, 256, 1, **kwargs)
            self.res3 = ResBlock(blocks[1], None, 256, 512, 2, **kwargs)
            self.res4 = ResBlock(blocks[2], None, 512, 1024, 2, **kwargs)
            self.res5 = ResBlock(blocks[3], None, 1024, 2048, 2, **kwargs)
            self.pool5 = lambda x: F.average(x, axis=(2, 3))
            self.fc6 = L.Linear(None, param['n_class'], **fc_kwargs)
            self.prob = F.softmax

        if path:
            chainer.serializers.load_npz(path, self) 
Example #19
Source File: rnn_cells.py    From knmt with GNU General Public License v3.0 5 votes vote down vote up
def create_initializer(init_type, scale=None, fillvalue=None):
    if init_type == 'identity':
        return initializers.Identity() if scale is None else initializers.Identity(scale=scale)
    if init_type == 'constant':
        return initializers.Constant(fillvalue)
    if init_type == 'zero':
        return initializers.Zero()
    if init_type == 'one':
        return initializers.One()
    if init_type == 'normal':
        return initializers.Normal() if scale is None else initializers.Normal(scale)
    if init_type == 'glorotNormal':
        return initializers.GlorotNormal() if scale is None else initializers.GlorotNormal(scale)
    if init_type == 'heNormal':
        return initializers.HeNormal() if scale is None else initializers.HeNormal(scale)
    if init_type == 'orthogonal':
        return initializers.Orthogonal(
            scale) if scale is None else initializers.Orthogonal(scale)
    if init_type == 'uniform':
        return initializers.Uniform(
            scale) if scale is None else initializers.Uniform(scale)
    if init_type == 'leCunUniform':
        return initializers.LeCunUniform(
            scale) if scale is None else initializers.LeCunUniform(scale)
    if init_type == 'glorotUniform':
        return initializers.GlorotUniform(
            scale) if scale is None else initializers.GlorotUniform(scale)
    if init_type == 'heUniform':
        return initializers.HeUniform(
            scale) if scale is None else initializers.HeUniform(scale)
    raise ValueError("Unknown initializer type: {0}".format(init_type)) 
Example #20
Source File: resnet50.py    From chainer with MIT License 5 votes vote down vote up
def __init__(self):
        super(ResNet50, self).__init__()
        with self.init_scope():
            self.conv1 = L.Convolution2D(
                3, 64, 7, 2, 3, initialW=initializers.HeNormal())
            self.bn1 = L.BatchNormalization(64)
            self.res2 = Block(3, 64, 64, 256, 1)
            self.res3 = Block(4, 256, 128, 512)
            self.res4 = Block(6, 512, 256, 1024)
            self.res5 = Block(3, 1024, 512, 2048)
            self.fc = L.Linear(2048, 1000) 
Example #21
Source File: resnet50.py    From chainer with MIT License 5 votes vote down vote up
def __init__(self, in_size, ch, groups=1):
        super(BottleNeckB, self).__init__()
        initialW = initializers.HeNormal()

        with self.init_scope():
            self.conv1 = L.Convolution2D(
                in_size, ch, 1, 1, 0, initialW=initialW, nobias=True)
            self.bn1 = L.BatchNormalization(ch)
            self.conv2 = L.Convolution2D(
                ch, ch, 3, 1, 1, initialW=initialW, nobias=True,
                groups=groups)
            self.bn2 = L.BatchNormalization(ch)
            self.conv3 = L.Convolution2D(
                ch, in_size, 1, 1, 0, initialW=initialW, nobias=True)
            self.bn3 = L.BatchNormalization(in_size) 
Example #22
Source File: nin.py    From chainer with MIT License 5 votes vote down vote up
def __init__(self):
        super(NIN, self).__init__()
        conv_init = I.HeNormal()  # MSRA scaling

        with self.init_scope():
            self.mlpconv1 = L.MLPConvolution2D(
                None, (96, 96, 96), 11, stride=4, conv_init=conv_init)
            self.mlpconv2 = L.MLPConvolution2D(
                None, (256, 256, 256), 5, pad=2, conv_init=conv_init)
            self.mlpconv3 = L.MLPConvolution2D(
                None, (384, 384, 384), 3, pad=1, conv_init=conv_init)
            self.mlpconv4 = L.MLPConvolution2D(
                None, (1024, 1024, 1000), 3, pad=1, conv_init=conv_init) 
Example #23
Source File: resnet50.py    From chainer-compiler with MIT License 5 votes vote down vote up
def __init__(self, compute_accuracy=False):
        super(ResNet50, self).__init__()
        self.compute_accuracy = compute_accuracy
        with self.init_scope():
            self.conv1 = L.Convolution2D(
                3, 64, 7, 2, 3, initialW=initializers.HeNormal())
            self.bn1 = L.BatchNormalization(64)
            self.res2 = Block(3, 64, 64, 256, 1)
            self.res3 = Block(4, 256, 128, 512)
            self.res4 = Block(6, 512, 256, 1024)
            self.res5 = Block(3, 1024, 512, 2048)
            self.fc = L.Linear(2048, 1000) 
Example #24
Source File: nin.py    From chainer-compiler with MIT License 5 votes vote down vote up
def __init__(self, compute_accuracy=False):
        super(NIN, self).__init__()
        self.compute_accuracy = compute_accuracy
        conv_init = I.HeNormal()  # MSRA scaling

        with self.init_scope():
            self.mlpconv1 = L.MLPConvolution2D(
                None, (96, 96, 96), 11, stride=4, conv_init=conv_init)
            self.mlpconv2 = L.MLPConvolution2D(
                None, (256, 256, 256), 5, pad=2, conv_init=conv_init)
            self.mlpconv3 = L.MLPConvolution2D(
                None, (384, 384, 384), 3, pad=1, conv_init=conv_init)
            self.mlpconv4 = L.MLPConvolution2D(
                None, (1024, 1024, 1000), 3, pad=1, conv_init=conv_init) 
Example #25
Source File: Resnet_with_loss.py    From chainer-compiler with MIT License 5 votes vote down vote up
def __init__(self):
        super(ResNet50, self).__init__()
        with self.init_scope():
            self.conv1 = L.Convolution2D(
                3, 64, 7, 2, 3, initialW=initializers.HeNormal())
            self.bn1 = L.BatchNormalization(64)
            self.res2 = Block(3, 64, 64, 256, 1)
            self.res3 = Block(4, 256, 128, 512)
            self.res4 = Block(6, 512, 256, 1024)
            self.res5 = Block(3, 1024, 512, 2048)
            self.fc = L.Linear(2048, 1000) 
Example #26
Source File: Resnet_with_loss.py    From chainer-compiler with MIT License 5 votes vote down vote up
def __init__(self, in_size, ch, groups=1):
        super(BottleNeckB, self).__init__()
        initialW = initializers.HeNormal()

        with self.init_scope():
            self.conv1 = L.Convolution2D(
                in_size, ch, 1, 1, 0, initialW=initialW, nobias=True)
            self.bn1 = L.BatchNormalization(ch)
            self.conv2 = L.Convolution2D(
                ch, ch, 3, 1, 1, initialW=initialW, nobias=True,
                groups=groups)
            self.bn2 = L.BatchNormalization(ch)
            self.conv3 = L.Convolution2D(
                ch, in_size, 1, 1, 0, initialW=initialW, nobias=True)
            self.bn3 = L.BatchNormalization(in_size) 
Example #27
Source File: resblock.py    From chainer-compiler with MIT License 5 votes vote down vote up
def main():
    np.random.seed(314)

    model = ResBlock(3, None, 64, 256, 1, initialW=initializers.HeNormal(scale=1., fan_option='fan_out'), stride_first=False)

    v = np.random.rand(2, 64, 56, 56).astype(np.float32)

    testtools.generate_testcase(model, [v]) 
Example #28
Source File: Resnet_with_loss.py    From chainer-compiler with MIT License 5 votes vote down vote up
def __init__(self):
        super(ResNet50, self).__init__()
        with self.init_scope():
            self.conv1 = L.Convolution2D(
                3, 64, 7, 2, 3, initialW=initializers.HeNormal())
            self.bn1 = L.BatchNormalization(64)
            self.res2 = Block(3, 64, 64, 256, 1)
            self.res3 = Block(4, 256, 128, 512)
            self.res4 = Block(6, 512, 256, 1024)
            self.res5 = Block(3, 1024, 512, 2048)
            self.fc = L.Linear(2048, 1000) 
Example #29
Source File: Resnet_with_loss.py    From chainer-compiler with MIT License 5 votes vote down vote up
def __init__(self, in_size, ch, groups=1):
        super(BottleNeckB, self).__init__()
        initialW = initializers.HeNormal()

        with self.init_scope():
            self.conv1 = L.Convolution2D(
                in_size, ch, 1, 1, 0, initialW=initialW, nobias=True)
            self.bn1 = L.BatchNormalization(ch)
            self.conv2 = L.Convolution2D(
                ch, ch, 3, 1, 1, initialW=initialW, nobias=True,
                groups=groups)
            self.bn2 = L.BatchNormalization(ch)
            self.conv3 = L.Convolution2D(
                ch, in_size, 1, 1, 0, initialW=initialW, nobias=True)
            self.bn3 = L.BatchNormalization(in_size) 
Example #30
Source File: conv.py    From nips17-adversarial-attack with MIT License 5 votes vote down vote up
def __init__(self, depth, ksize, stride=1, pad=0, initialW=I.HeNormal()):
        super(ConvBnRelu, self).__init__()
        with self.init_scope():
            self.conv = L.Convolution2D(None, depth, ksize=ksize, stride=stride, pad=pad, initialW=initialW, nobias=True)
            self.bn = L.BatchNormalization(depth, decay=0.9997, eps=0.001, use_gamma=False)