Python torch.autograd.Variable() Examples
The following are 30
code examples of torch.autograd.Variable().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch.autograd
, or try the search function
.
Example #1
Source File: DDPAE.py From DDPAE-video-prediction with MIT License | 6 votes |
def test(self, input, output): ''' Return decoded output. ''' input = Variable(input.cuda()) batch_size, _, _, H, W = input.size() output = Variable(output.cuda()) gt = torch.cat([input, output], dim=1) latent = self.encode(input, sample=False) decoded_output, components = self.decode(latent, input.size(0)) decoded_output = decoded_output.view(*gt.size()) components = components.view(batch_size, self.n_frames_total, self.total_components, self.n_channels, H, W) latent['components'] = components decoded_output = decoded_output.clamp(0, 1) self.save_visuals(gt, decoded_output, components, latent) return decoded_output.cpu(), latent
Example #2
Source File: googlenet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def forward(self, x): out = self.pre_layers(x) out = self.a3(out) out = self.b3(out) out = self.maxpool(out) out = self.a4(out) out = self.b4(out) out = self.c4(out) out = self.d4(out) out = self.e4(out) out = self.maxpool(out) out = self.a5(out) out = self.b5(out) out = self.avgpool(out) out = out.view(out.size(0), -1) out = self.linear(out) return out # net = GoogLeNet() # x = torch.randn(1,3,32,32) # y = net(Variable(x)) # print(y.size())
Example #3
Source File: vgg.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _make_layers(self, cfg): layers = [] in_channels = 3 for x in cfg: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x layers += [nn.AvgPool2d(kernel_size=1, stride=1)] return nn.Sequential(*layers) # net = VGG('VGG11') # x = torch.randn(2,3,32,32) # print(net(Variable(x)).size())
Example #4
Source File: vgg.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _make_layers(self, cfg): layers = [] in_channels = 3 for x in cfg: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x layers += [nn.AvgPool2d(kernel_size=1, stride=1)] return nn.Sequential(*layers) # net = VGG('VGG11') # x = torch.randn(2,3,32,32) # print(net(Variable(x)).size())
Example #5
Source File: DDPAE.py From DDPAE-video-prediction with MIT License | 6 votes |
def train(self, input, output): ''' param input: video of size (batch_size, n_frames_input, C, H, W) param output: video of size (batch_size, self.n_frames_output, C, H, W) Return video_dict, loss_dict ''' input = Variable(input.cuda(), requires_grad=False) output = Variable(output.cuda(), requires_grad=False) assert input.size(1) == self.n_frames_input # SVI batch_size, _, C, H, W = input.size() numel = batch_size * self.n_frames_total * C * H * W loss_dict = {} for name, svi in self.svis.items(): # loss = svi.step(input, output) # Note: backward() is already called in loss_and_grads. loss = svi.loss_and_grads(svi.model, svi.guide, input, output) loss_dict[name] = loss / numel # Update parameters self.optimizer.step() self.optimizer.zero_grad() return {}, loss_dict
Example #6
Source File: vgg.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _make_layers(self, cfg): layers = [] in_channels = 3 for x in cfg: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x layers += [nn.AvgPool2d(kernel_size=1, stride=1)] return nn.Sequential(*layers) # net = VGG('VGG11') # x = torch.randn(2,3,32,32) # print(net(Variable(x)).size())
Example #7
Source File: DDPAE_utils.py From DDPAE-video-prediction with MIT License | 6 votes |
def pose_inv_full(pose): ''' param pose: N x 6 Inverse the 2x3 transformer matrix. ''' N, _ = pose.size() b = pose.view(N, 2, 3)[:, :, 2:] # A^{-1} # Calculate determinant determinant = (pose[:, 0] * pose[:, 4] - pose[:, 1] * pose[:, 3] + 1e-8).view(N, 1) indices = Variable(torch.LongTensor([4, 1, 3, 0]).cuda()) scale = Variable(torch.Tensor([1, -1, -1, 1]).cuda()) A_inv = torch.index_select(pose, 1, indices) * scale / determinant A_inv = A_inv.view(N, 2, 2) # b' = - A^{-1} b b_inv = - A_inv.matmul(b).view(N, 2, 1) transformer_inv = torch.cat([A_inv, b_inv], dim=2) return transformer_inv
Example #8
Source File: googlenet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def forward(self, x): out = self.pre_layers(x) out = self.a3(out) out = self.b3(out) out = self.maxpool(out) out = self.a4(out) out = self.b4(out) out = self.c4(out) out = self.d4(out) out = self.e4(out) out = self.maxpool(out) out = self.a5(out) out = self.b5(out) out = self.avgpool(out) out = out.view(out.size(0), -1) out = self.linear(out) return out # net = GoogLeNet() # x = torch.randn(1,3,32,32) # y = net(Variable(x)) # print(y.size())
Example #9
Source File: metrics.py From DDPAE-video-prediction with MIT License | 6 votes |
def update(self, gt, pred): """ gt, pred are tensors of size (..., 1, H, W) in the range [0, 1]. """ C, H, W = gt.size()[-3:] if isinstance(gt, torch.Tensor): gt = Variable(gt) if isinstance(pred, torch.Tensor): pred = Variable(pred) mse_score = self.mse_loss(pred, gt) eps = 1e-4 pred.data[pred.data < eps] = eps pred.data[pred.data > 1 - eps] = 1 -eps bce_score = self.bce_loss(pred, gt) bce_score = bce_score.item() * C * H * W mse_score = mse_score.item() * C * H * W self.bce_results.append(bce_score) self.mse_results.append(mse_score)
Example #10
Source File: shufflenet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test(): net = ShuffleNetG2() x = Variable(torch.randn(1,3,32,32)) y = net(x) print(y) # test()
Example #11
Source File: mnist_tutorial_pytorch.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): x = F.max_pool2d(F.relu(self.conv1(x)), 2) x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, 64 * 7 * 7) # reshape Variable x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=-1)
Example #12
Source File: shufflenet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test(): net = ShuffleNetG2() x = Variable(torch.randn(1,3,32,32)) y = net(x) print(y) # test()
Example #13
Source File: preact_resnet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test(): net = PreActResNet18() y = net(Variable(torch.randn(1,3,32,32))) print(y.size()) # test()
Example #14
Source File: senet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test(): net = SENet18() y = net(Variable(torch.randn(1,3,32,32))) print(y.size()) # test()
Example #15
Source File: dpn.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test(): net = DPN92() x = Variable(torch.randn(1,3,32,32)) y = net(x) print(y) # test()
Example #16
Source File: resnext.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_resnext(): net = ResNeXt29_2x64d() x = torch.randn(1,3,32,32) y = net(Variable(x)) print(y.size()) # test_resnext()
Example #17
Source File: resnet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test(): net = ResNet18() y = net(Variable(torch.randn(1,3,32,32))) print(y.size()) # test()
Example #18
Source File: shufflenet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test(): net = ShuffleNetG2() x = Variable(torch.randn(1,3,32,32)) y = net(x) print(y) # test()
Example #19
Source File: util.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def t2var(t,cuda): if cuda: t = t.cuda() t = Variable(t, volatile=True) return t
Example #20
Source File: densenet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_densenet(): net = densenet_cifar() x = torch.randn(1,3,32,32) y = net(Variable(x)) print(y) # test_densenet()
Example #21
Source File: resnet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test(): net = ResNet18() y = net(Variable(torch.randn(1,3,32,32))) print(y.size()) # test()
Example #22
Source File: preact_resnet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test(): net = PreActResNet18() y = net(Variable(torch.randn(1,3,32,32))) print(y.size()) # test()
Example #23
Source File: senet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test(): net = SENet18() y = net(Variable(torch.randn(1,3,32,32))) print(y.size()) # test()
Example #24
Source File: dpn.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test(): net = DPN92() x = Variable(torch.randn(1,3,32,32)) y = net(x) print(y) # test()
Example #25
Source File: pnasnet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test(): net = PNASNetB() print(net) x = Variable(torch.randn(1,3,32,32)) y = net(x) print(y) # test()
Example #26
Source File: resnext.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_resnext(): net = ResNeXt29_2x64d() x = torch.randn(1,3,32,32) y = net(Variable(x)) print(y.size()) # test_resnext()
Example #27
Source File: pose_rnn.py From DDPAE-video-prediction with MIT License | 5 votes |
def predict(self, encoder_outputs, hidden_states): ''' Second part of the model. input: encoder outputs and hidden_states of each component. Return predicted betas. ''' batch_size = encoder_outputs.size(0) pred_beta_mu, pred_beta_sigma = None, None pred_outputs = [] prev_hidden = [Variable(torch.zeros(batch_size, 1, self.hidden_size).cuda())] \ * self.n_frames_output for i in range(self.n_components): hidden = hidden_states[i] prev_outputs = encoder_outputs[:, -1:, i, :] frame_outputs = [] # Manual unroll for j in range(self.n_frames_output): if self.independent_components: rnn_input = prev_outputs else: rnn_input = torch.cat([prev_outputs, prev_hidden[j]], dim=2) output, hidden = self.predict_rnn(rnn_input, hidden) prev_outputs = output prev_hidden[j] = hidden[0].view(batch_size, 1, -1) frame_outputs.append(output) # frame_outputs: batch_size x n_frames_output x (hidden_size * 2) frame_outputs = torch.cat(frame_outputs, dim=1) pred_outputs.append(frame_outputs) # batch_size x n_frames_output x n_components x hidden_size pred_outputs = torch.stack(pred_outputs, dim=2) pred_beta_mu = self.beta_mu_layer(pred_outputs).view(-1, self.output_size) pred_beta_sigma = self.beta_sigma_layer(pred_outputs).view(-1, self.output_size) pred_beta_sigma = F.softplus(pred_beta_sigma) return pred_beta_mu, pred_beta_sigma
Example #28
Source File: DDPAE.py From DDPAE-video-prediction with MIT License | 5 votes |
def model(self, input, output): ''' Likelihood model: sample from prior, then decode to video. param input: video of size (batch_size, self.n_frames_input, C, H, W) param output: video of size (batch_size, self.n_frames_output, C, H, W) ''' # Register networks for name, net in self.model_modules.items(): pyro.module(name, net) observation = torch.cat([input, output], dim=1) # Sample from prior latent = self.sample_latent_prior(input) # Decode decoded_output, components = self.decode(latent, input.size(0)) decoded_output = decoded_output.view(*observation.size()) if self.predict_loss_only: # Only consider loss from the predicted frames decoded_output = decoded_output[:, self.n_frames_input:] observation = observation[:, self.n_frames_input:] components = components[:, self.n_frames_input:, ...] # pyro observe sd = Variable(0.3 * torch.ones(*decoded_output.size()).cuda()) pyro.sample('obs', dist.Normal(decoded_output, sd), obs=observation)
Example #29
Source File: DDPAE_utils.py From DDPAE-video-prediction with MIT License | 5 votes |
def pose_inv(pose): ''' param pose: N x 3 [s,x,y] -> [1/s,-x/s,-y/s] ''' N, _ = pose.size() ones = Variable(torch.ones(N, 1).cuda(), requires_grad=False) out = torch.cat([ones, -pose[:, 1:]], dim=1) out = out / pose[:, 0:1] return out
Example #30
Source File: predict_video.py From cat-bbs with MIT License | 5 votes |
def find_bbs(img, model, conf_threshold, input_size): """Find bounding boxes in an image.""" # pad image so that its square img_pad, (pad_top, pad_right, pad_bottom, pad_left) = to_aspect_ratio_add(img, 1.0, return_paddings=True) # resize padded image to desired input size # "linear" interpolation seems to be enough here for 400x400 or larger images # change to "area" or "cubic" for marginally better quality img_rs = ia.imresize_single_image(img_pad, (input_size, input_size), interpolation="linear") # convert to torch-ready input variable inputs_np = (np.array([img_rs])/255.0).astype(np.float32).transpose(0, 3, 1, 2) inputs = torch.from_numpy(inputs_np) inputs = Variable(inputs, volatile=True) if GPU >= 0: inputs = inputs.cuda(GPU) # apply model and measure the model's time time_start = time.time() outputs_pred = model(inputs) time_req = time.time() - time_start # process the model's output (i.e. convert heatmaps to BBs) result = ModelResult( outputs_pred, inputs_np, img, (pad_top, pad_right, pad_bottom, pad_left) ) bbs = result.get_bbs() return bbs, time_req