Python keras.metrics.categorical_accuracy() Examples
The following are 30
code examples of keras.metrics.categorical_accuracy().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.metrics
, or try the search function
.
Example #1
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_saving_lambda_custom_objects(): inputs = Input(shape=(3,)) x = Lambda(lambda x: square_fn(x), output_shape=(3,))(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname, custom_objects={'square_fn': square_fn}) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #2
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_saving_lambda_custom_objects(): inputs = Input(shape=(3,)) x = Lambda(lambda x: square_fn(x), output_shape=(3,))(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname, custom_objects={'square_fn': square_fn}) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #3
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_functional_model_saving(): inputs = Input(shape=(3,)) x = Dense(2)(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.Adam(), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #4
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_saving_lambda_custom_objects(): inputs = Input(shape=(3,)) x = Lambda(lambda x: square_fn(x), output_shape=(3,))(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname, custom_objects={'square_fn': square_fn}) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #5
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_functional_model_saving(): inputs = Input(shape=(3,)) x = Dense(2)(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.Adam(), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #6
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_saving_lambda_custom_objects(): inputs = Input(shape=(3,)) x = Lambda(lambda x: square_fn(x), output_shape=(3,))(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname, custom_objects={'square_fn': square_fn}) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #7
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_functional_model_saving(): inputs = Input(shape=(3,)) x = Dense(2)(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.Adam(), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #8
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_saving_lambda_custom_objects(): inputs = Input(shape=(3,)) x = Lambda(lambda x: square_fn(x), output_shape=(3,))(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname, custom_objects={'square_fn': square_fn}) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #9
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_functional_model_saving(): inputs = Input(shape=(3,)) x = Dense(2)(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.Adam(), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #10
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_saving_lambda_custom_objects(): inputs = Input(shape=(3,)) x = Lambda(lambda x: square_fn(x), output_shape=(3,))(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname, custom_objects={'square_fn': square_fn}) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #11
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_functional_model_saving(): inputs = Input(shape=(3,)) x = Dense(2)(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.Adam(), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #12
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_functional_model_saving(): inputs = Input(shape=(3,)) x = Dense(2)(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.Adam(), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #13
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_saving_lambda_custom_objects(): inputs = Input(shape=(3,)) x = Lambda(lambda x: square_fn(x), output_shape=(3,))(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname, custom_objects={'square_fn': square_fn}) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #14
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_functional_model_saving(): inputs = Input(shape=(3,)) x = Dense(2)(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.Adam(), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #15
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_saving_lambda_custom_objects(): inputs = Input(shape=(3,)) x = Lambda(lambda x: square_fn(x), output_shape=(3,))(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname, custom_objects={'square_fn': square_fn}) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #16
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def test_functional_model_saving(): inputs = Input(shape=(3,)) x = Dense(2)(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.Adam(), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) model = load_model(fname) os.remove(fname) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #17
Source File: ir2tagsets_seq.py From plastering with MIT License | 6 votes |
def fit_new(self, x, y=None): timesteps = x.shape[1] input_dim = x.shape[2] self.ae = Sequential() self.ae.add(Dense(self.latent_dim, input_shape=(timesteps,input_dim,), activation='relu', name='enc')) self.ae.add(Dropout(0.2)) self.ae.add(Dense(input_dim, activation='softmax', name='dec')) self.encoder = Model(inputs=self.ae.input, outputs=self.ae.get_layer('enc').output) #rmsprop = RMSprop(lr=0.05) self.ae.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['categorical_accuracy'],) self.ae.fit(x, x, epochs=1)
Example #18
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_model_saving_to_pre_created_h5py_file(): inputs = Input(shape=(3,)) x = Dense(2)(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.Adam(), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') with h5py.File(fname, mode='r+') as h5file: save_model(model, h5file) loaded_model = load_model(h5file) out2 = loaded_model.predict(x) assert_allclose(out, out2, atol=1e-05) # test non-default options in h5 with h5py.File('does not matter', driver='core', backing_store=False) as h5file: save_model(model, h5file) loaded_model = load_model(h5file) out2 = loaded_model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #19
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_model_saving_to_binary_stream(): inputs = Input(shape=(3,)) x = Dense(2)(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.Adam(), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') with h5py.File(fname, mode='r+') as h5file: save_model(model, h5file) loaded_model = load_model(h5file) out2 = loaded_model.predict(x) assert_allclose(out, out2, atol=1e-05) # Save the model to an in-memory-only h5 file. with h5py.File('does not matter', driver='core', backing_store=False) as h5file: save_model(model, h5file) h5file.flush() # Very important! Otherwise you get all zeroes below. binary_data = h5file.fid.get_file_image() # Make sure the binary data is correct by saving it to a file manually # and then loading it the usual way. with open(fname, 'wb') as raw_file: raw_file.write(binary_data) # Load the manually-saved binary data, and make sure the model is intact. with h5py.File(fname, mode='r') as h5file: loaded_model = load_model(h5file) out2 = loaded_model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #20
Source File: ir2tagsets_seq.py From plastering with MIT License | 5 votes |
def fit(self, x, y=None): timesteps = x.shape[1] input_dim = x.shape[2] self.ae = Sequential() #m.add(LSTM(latent_dim, input_dim=in_dim, return_sequen|ces=True, name='enc'), ) self.ae.add(LSTM(self.latent_dim, activation='softsign', input_shape=(timesteps,input_dim,), return_sequences=True, unroll=True, name='enc'), ) self.ae.add(LSTM(input_dim, activation='softsign', return_sequences=True, unroll=True, name='dec', )) self.ae.add(Activation('softmax')) self.encoder = Model(inputs=self.ae.input, outputs=self.ae.get_layer('enc').output) rmsprop = RMSprop(lr=0.005) self.ae.compile(loss='categorical_hinge', optimizer=rmsprop, metrics=['categorical_accuracy', 'binary_accuracy'],) self.ae.fit(x, x, epochs=1)
Example #21
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_sequential_model_saving(): model = Sequential() model.add(Dense(2, input_shape=(3,))) model.add(RepeatVector(3)) model.add(TimeDistributed(Dense(3))) model.compile(loss=losses.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy], sample_weight_mode='temporal') x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) new_model = load_model(fname) os.remove(fname) out2 = new_model.predict(x) assert_allclose(out, out2, atol=1e-05) # test that new updates are the same with both models x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) new_model.train_on_batch(x, y) out = model.predict(x) out2 = new_model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #22
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_model_saving_to_pre_created_h5py_file(): inputs = Input(shape=(3,)) x = Dense(2)(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.Adam(), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') with h5py.File(fname, mode='r+') as h5file: save_model(model, h5file) loaded_model = load_model(h5file) out2 = loaded_model.predict(x) assert_allclose(out, out2, atol=1e-05) # test non-default options in h5 with h5py.File('does not matter', driver='core', backing_store=False) as h5file: save_model(model, h5file) loaded_model = load_model(h5file) out2 = loaded_model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #23
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_model_saving_to_binary_stream(): inputs = Input(shape=(3,)) x = Dense(2)(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.Adam(), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') with h5py.File(fname, mode='r+') as h5file: save_model(model, h5file) loaded_model = load_model(h5file) out2 = loaded_model.predict(x) assert_allclose(out, out2, atol=1e-05) # Save the model to an in-memory-only h5 file. with h5py.File('does not matter', driver='core', backing_store=False) as h5file: save_model(model, h5file) h5file.flush() # Very important! Otherwise you get all zeroes below. binary_data = h5file.fid.get_file_image() # Make sure the binary data is correct by saving it to a file manually # and then loading it the usual way. with open(fname, 'wb') as raw_file: raw_file.write(binary_data) # Load the manually-saved binary data, and make sure the model is intact. with h5py.File(fname, mode='r') as h5file: loaded_model = load_model(h5file) out2 = loaded_model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #24
Source File: pseudo_cifar.py From Pseudo-Label-Keras with MIT License | 5 votes |
def accuracy(self, y_true, y_pred): y_true_item = y_true[:, :self.n_classes] return categorical_accuracy(y_true_item, y_pred)
Example #25
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_sequential_model_saving(): model = Sequential() model.add(Dense(2, input_shape=(3,))) model.add(RepeatVector(3)) model.add(TimeDistributed(Dense(3))) model.compile(loss=losses.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy], sample_weight_mode='temporal') x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) new_model = load_model(fname) os.remove(fname) out2 = new_model.predict(x) assert_allclose(out, out2, atol=1e-05) # test that new updates are the same with both models x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) new_model.train_on_batch(x, y) out = model.predict(x) out2 = new_model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #26
Source File: mobilenet_transfer_pseudo_cifar.py From Pseudo-Label-Keras with MIT License | 5 votes |
def accuracy(self, y_true, y_pred): y_true_item = y_true[:, :self.n_classes] return categorical_accuracy(y_true_item, y_pred)
Example #27
Source File: cnn_major_shallow.py From Facial-Expression-Recognition with MIT License | 5 votes |
def baseline_model(): # Initialising the CNN model = Sequential() # 1 - Convolution model.add(Conv2D(64,(3,3), border_mode='same', input_shape=(48, 48,1))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 2nd Convolution layer model.add(Conv2D(128,(5,5), border_mode='same')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # Flattening model.add(Flatten()) # Fully connected layer 1st layer model.add(Dense(256)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.25)) model.add(Dense(num_class, activation='sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=[categorical_accuracy]) return model
Example #28
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_model_saving_to_binary_stream(): inputs = Input(shape=(3,)) x = Dense(2)(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.Adam(), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') with h5py.File(fname, mode='r+') as h5file: save_model(model, h5file) loaded_model = load_model(h5file) out2 = loaded_model.predict(x) assert_allclose(out, out2, atol=1e-05) # Save the model to an in-memory-only h5 file. with h5py.File('does not matter', driver='core', backing_store=False) as h5file: save_model(model, h5file) h5file.flush() # Very important! Otherwise you get all zeroes below. binary_data = h5file.fid.get_file_image() # Make sure the binary data is correct by saving it to a file manually # and then loading it the usual way. with open(fname, 'wb') as raw_file: raw_file.write(binary_data) # Load the manually-saved binary data, and make sure the model is intact. with h5py.File(fname, mode='r') as h5file: loaded_model = load_model(h5file) out2 = loaded_model.predict(x) assert_allclose(out, out2, atol=1e-05)
Example #29
Source File: pseudo_pretrain_cifar.py From Pseudo-Label-Keras with MIT License | 5 votes |
def accuracy(self, y_true, y_pred): y_true_item = y_true[:, :self.n_classes] return categorical_accuracy(y_true_item, y_pred)
Example #30
Source File: test_model_saving.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_sequential_model_saving(): model = Sequential() model.add(Dense(2, input_shape=(3,))) model.add(RepeatVector(3)) model.add(TimeDistributed(Dense(3))) model.compile(loss=losses.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy], sample_weight_mode='temporal') x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) new_model = load_model(fname) os.remove(fname) out2 = new_model.predict(x) assert_allclose(out, out2, atol=1e-05) # test that new updates are the same with both models x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) new_model.train_on_batch(x, y) out = model.predict(x) out2 = new_model.predict(x) assert_allclose(out, out2, atol=1e-05)