Python sklearn.covariance.GraphLassoCV() Examples
The following are 3
code examples of sklearn.covariance.GraphLassoCV().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.covariance
, or try the search function
.
Example #1
Source File: abide_utils.py From gcn_metric_learning with MIT License | 5 votes |
def subject_connectivity(timeseries, subject, atlas_name, kind, save=True, save_path=root_folder): """ timeseries : timeseries table for subject (timepoints x regions) subject : the subject short ID atlas_name : name of the atlas used kind : the kind of connectivity to be used, e.g. lasso, partial correlation, correlation save : save the connectivity matrix to a file save_path : specify path to save the matrix if different from subject folder returns: connectivity : connectivity matrix (regions x regions) """ print("Estimating %s matrix for subject %s" % (kind, subject)) if kind == 'lasso': # Graph Lasso estimator covariance_estimator = GraphLassoCV(verbose=1) covariance_estimator.fit(timeseries) connectivity = covariance_estimator.covariance_ print('Covariance matrix has shape {0}.'.format(connectivity.shape)) elif kind in ['tangent', 'partial correlation', 'correlation']: conn_measure = connectome.ConnectivityMeasure(kind=kind) connectivity = conn_measure.fit_transform([timeseries])[0] if save: subject_file = os.path.join(save_path, subject, subject + '_' + atlas_name + '_' + kind.replace(' ', '_') + '.mat') sio.savemat(subject_file, {'connectivity': connectivity}) return connectivity
Example #2
Source File: abide_utils.py From gcn_metric_learning with MIT License | 5 votes |
def group_connectivity(timeseries, subject_list, atlas_name, kind, save=True, save_path=root_folder): """ timeseries : list of timeseries tables for subjects (timepoints x regions) subject_list : the subject short IDs list atlas_name : name of the atlas used kind : the kind of connectivity to be used, e.g. lasso, partial correlation, correlation save : save the connectivity matrix to a file save_path : specify path to save the matrix if different from subject folder returns: connectivity : connectivity matrix (regions x regions) """ if kind == 'lasso': # Graph Lasso estimator covariance_estimator = GraphLassoCV(verbose=1) connectivity_matrices = [] for i, ts in enumerate(timeseries): covariance_estimator.fit(ts) connectivity = covariance_estimator.covariance_ connectivity_matrices.append(connectivity) print('Covariance matrix has shape {0}.'.format(connectivity.shape)) elif kind in ['tangent', 'partial correlation', 'correlation']: conn_measure = connectome.ConnectivityMeasure(kind=kind) connectivity_matrices = conn_measure.fit_transform(timeseries) if save: for i, subject in enumerate(subject_list): subject_file = os.path.join(save_path, subject_list[i], subject_list[i] + '_' + atlas_name + '_' + kind.replace(' ', '_') + '.mat') sio.savemat(subject_file, {'connectivity': connectivity_matrices[i]}) print("Saving connectivity matrix to %s" % subject_file) return connectivity_matrices
Example #3
Source File: test_covariance.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.covariance.EmpiricalCovariance, covariance.EmpiricalCovariance) self.assertIs(df.covariance.EllipticEnvelope, covariance.EllipticEnvelope) self.assertIs(df.covariance.GraphLasso, covariance.GraphLasso) self.assertIs(df.covariance.GraphLassoCV, covariance.GraphLassoCV) self.assertIs(df.covariance.LedoitWolf, covariance.LedoitWolf) self.assertIs(df.covariance.MinCovDet, covariance.MinCovDet) self.assertIs(df.covariance.OAS, covariance.OAS) self.assertIs(df.covariance.ShrunkCovariance, covariance.ShrunkCovariance) self.assertIs(df.covariance.shrunk_covariance, covariance.shrunk_covariance) self.assertIs(df.covariance.graph_lasso, covariance.graph_lasso)