Python sklearn.covariance.EllipticEnvelope() Examples
The following are 12
code examples of sklearn.covariance.EllipticEnvelope().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.covariance
, or try the search function
.
Example #1
Source File: test_elliptic_envelope.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_elliptic_envelope(): rnd = np.random.RandomState(0) X = rnd.randn(100, 10) clf = EllipticEnvelope(contamination=0.1) assert_raises(NotFittedError, clf.predict, X) assert_raises(NotFittedError, clf.decision_function, X) clf.fit(X) y_pred = clf.predict(X) scores = clf.score_samples(X) decisions = clf.decision_function(X) assert_array_almost_equal( scores, -clf.mahalanobis(X)) assert_array_almost_equal(clf.mahalanobis(X), clf.dist_) assert_almost_equal(clf.score(X, np.ones(100)), (100 - y_pred[y_pred == -1].size) / 100.) assert(sum(y_pred == -1) == sum(decisions < 0))
Example #2
Source File: outlier_detection.py From JusticeAI with MIT License | 6 votes |
def initialize_fact_model(self): # Extract all RASA training sentences for all facts rasa_fact_paths = glob.glob(self.RASA_FACT_DIR + '*.json') all_sentences = [] for fact_path in rasa_fact_paths: with open(fact_path, 'r') as f: file_json = json.loads(f.read().encode('utf-8')) for example in file_json['rasa_nlu_data']['common_examples']: all_sentences.append(example['text'].lower()) # TF-IDF model tfidf_vectorizer = TfidfVectorizer(ngram_range=self.NGRAM_RANGE, strip_accents='ascii') X_tfidf = tfidf_vectorizer.fit_transform(all_sentences) # Fit to robust covariance estimation outlier_estimator = EllipticEnvelope(contamination=self.CONTAMINATION) outlier_estimator.fit(X_tfidf.toarray()) # Binarize for future use with open(self.TFIFD_PICKLE_FILE, 'wb') as f: joblib.dump(tfidf_vectorizer, f, compress=True) with open(self.OUTLIER_PICKLE_FILE, 'wb') as f: joblib.dump(outlier_estimator, f, compress=True)
Example #3
Source File: outlier_filtering.py From enhancement_proposals with BSD 3-Clause "New" or "Revised" License | 5 votes |
def fit_pipe(self, X, y=None): self.elliptic_envelope_ = EllipticEnvelope(**self.get_params()) self.elliptic_envelope_.fit(X) return self.transform_pipe(X, y)
Example #4
Source File: elliptic_envelope.py From monasca-analytics with Apache License 2.0 | 5 votes |
def __init__(self, _id, _config): super(EllipticEnvelope, self).__init__(_id, _config) self._nb_samples = int(_config['nb_samples'])
Example #5
Source File: elliptic_envelope.py From monasca-analytics with Apache License 2.0 | 5 votes |
def get_default_config(): return { 'module': EllipticEnvelope.__name__, 'nb_samples': N_SAMPLES }
Example #6
Source File: elliptic_envelope.py From monasca-analytics with Apache License 2.0 | 5 votes |
def _get_best_detector(self, train): detector = covariance.EllipticEnvelope() detector.fit(train) return detector
Example #7
Source File: test_elliptic_envelope.py From monasca-analytics with Apache License 2.0 | 5 votes |
def setUp(self): super(TestEllipticEnvelope, self).setUp() self.ee_sml = elliptic_envelope.EllipticEnvelope( "fakeid", {"module": "fake", "nb_samples": 1000})
Example #8
Source File: test_elliptic_envelope.py From monasca-analytics with Apache License 2.0 | 5 votes |
def test_learn_structure(self): data = self.get_testing_data() clf = self.ee_sml.learn_structure(data) self.assertIsInstance(clf, covariance.EllipticEnvelope)
Example #9
Source File: test_elliptic_envelope.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_score_samples(): X_train = [[1, 1], [1, 2], [2, 1]] clf1 = EllipticEnvelope(contamination=0.2).fit(X_train) clf2 = EllipticEnvelope().fit(X_train) assert_array_equal(clf1.score_samples([[2., 2.]]), clf1.decision_function([[2., 2.]]) + clf1.offset_) assert_array_equal(clf2.score_samples([[2., 2.]]), clf2.decision_function([[2., 2.]]) + clf2.offset_) assert_array_equal(clf1.score_samples([[2., 2.]]), clf2.score_samples([[2., 2.]]))
Example #10
Source File: test_elliptic_envelope.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_raw_values_deprecation(): X = [[0.0], [1.0]] clf = EllipticEnvelope().fit(X) assert_warns_message(DeprecationWarning, "raw_values parameter is deprecated in 0.20 and will" " be removed in 0.22.", clf.decision_function, X, raw_values=True)
Example #11
Source File: test_elliptic_envelope.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_threshold_deprecation(): X = [[0.0], [1.0]] clf = EllipticEnvelope().fit(X) assert_warns_message(DeprecationWarning, "threshold_ attribute is deprecated in 0.20 and will" " be removed in 0.22.", getattr, clf, "threshold_")
Example #12
Source File: test_covariance.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.covariance.EmpiricalCovariance, covariance.EmpiricalCovariance) self.assertIs(df.covariance.EllipticEnvelope, covariance.EllipticEnvelope) self.assertIs(df.covariance.GraphLasso, covariance.GraphLasso) self.assertIs(df.covariance.GraphLassoCV, covariance.GraphLassoCV) self.assertIs(df.covariance.LedoitWolf, covariance.LedoitWolf) self.assertIs(df.covariance.MinCovDet, covariance.MinCovDet) self.assertIs(df.covariance.OAS, covariance.OAS) self.assertIs(df.covariance.ShrunkCovariance, covariance.ShrunkCovariance) self.assertIs(df.covariance.shrunk_covariance, covariance.shrunk_covariance) self.assertIs(df.covariance.graph_lasso, covariance.graph_lasso)