Python keras.datasets.reuters.load_data() Examples
The following are 30
code examples of keras.datasets.reuters.load_data().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.datasets.reuters
, or try the search function
.
Example #1
Source File: datasets.py From DEC-keras with MIT License | 6 votes |
def load_imdb(): from keras.preprocessing.text import Tokenizer from keras.datasets import imdb max_words = 1000 print('Loading data...') (x1, y1), (x2, y2) = imdb.load_data(num_words=max_words) x = np.concatenate((x1, x2)) y = np.concatenate((y1, y2)) print(len(x), 'train sequences') num_classes = np.max(y) + 1 print(num_classes, 'classes') print('Vectorizing sequence data...') tokenizer = Tokenizer(num_words=max_words) x = tokenizer.sequences_to_matrix(x, mode='binary') print('x_train shape:', x.shape) return x.astype(float), y
Example #2
Source File: test_datasets.py From CAPTCHA-breaking with MIT License | 6 votes |
def test_imdb(self): print('imdb') (X_train, y_train), (X_test, y_test) = imdb.load_data()
Example #3
Source File: datasets.py From DEC-keras with MIT License | 6 votes |
def load_retures_keras(): from keras.preprocessing.text import Tokenizer from keras.datasets import reuters max_words = 1000 print('Loading data...') (x, y), (_, _) = reuters.load_data(num_words=max_words, test_split=0.) print(len(x), 'train sequences') num_classes = np.max(y) + 1 print(num_classes, 'classes') print('Vectorizing sequence data...') tokenizer = Tokenizer(num_words=max_words) x = tokenizer.sequences_to_matrix(x, mode='binary') print('x_train shape:', x.shape) return x.astype(float), y
Example #4
Source File: test_datasets.py From CAPTCHA-breaking with MIT License | 6 votes |
def test_cifar(self): print('cifar10') (X_train, y_train), (X_test, y_test) = cifar10.load_data() print(X_train.shape) print(X_test.shape) print(y_train.shape) print(y_test.shape) print('cifar100 fine') (X_train, y_train), (X_test, y_test) = cifar100.load_data('fine') print(X_train.shape) print(X_test.shape) print(y_train.shape) print(y_test.shape) print('cifar100 coarse') (X_train, y_train), (X_test, y_test) = cifar100.load_data('coarse') print(X_train.shape) print(X_test.shape) print(y_train.shape) print(y_test.shape)
Example #5
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_imdb(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = imdb.load_data() (x_train, y_train), (x_test, y_test) = imdb.load_data(maxlen=40) assert len(x_train) == len(y_train) assert len(x_test) == len(y_test) word_index = imdb.get_word_index() assert isinstance(word_index, dict)
Example #6
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_mnist(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = mnist.load_data() assert len(x_train) == len(y_train) == 60000 assert len(x_test) == len(y_test) == 10000
Example #7
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_imdb(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = imdb.load_data() (x_train, y_train), (x_test, y_test) = imdb.load_data(maxlen=40) assert len(x_train) == len(y_train) assert len(x_test) == len(y_test) word_index = imdb.get_word_index() assert isinstance(word_index, dict)
Example #8
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_boston_housing(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = boston_housing.load_data() assert len(x_train) == len(y_train) assert len(x_test) == len(y_test)
Example #9
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_cifar(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = cifar10.load_data() assert len(x_train) == len(y_train) == 50000 assert len(x_test) == len(y_test) == 10000 (x_train, y_train), (x_test, y_test) = cifar100.load_data('fine') assert len(x_train) == len(y_train) == 50000 assert len(x_test) == len(y_test) == 10000 (x_train, y_train), (x_test, y_test) = cifar100.load_data('coarse') assert len(x_train) == len(y_train) == 50000 assert len(x_test) == len(y_test) == 10000
Example #10
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_reuters(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = reuters.load_data() assert len(x_train) == len(y_train) assert len(x_test) == len(y_test) assert len(x_train) + len(x_test) == 11228 (x_train, y_train), (x_test, y_test) = reuters.load_data(maxlen=10) assert len(x_train) == len(y_train) assert len(x_test) == len(y_test) word_index = reuters.get_word_index() assert isinstance(word_index, dict)
Example #11
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_mnist(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = mnist.load_data() assert len(x_train) == len(y_train) == 60000 assert len(x_test) == len(y_test) == 10000
Example #12
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_imdb(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = imdb.load_data() (x_train, y_train), (x_test, y_test) = imdb.load_data(maxlen=40) assert len(x_train) == len(y_train) assert len(x_test) == len(y_test) word_index = imdb.get_word_index() assert isinstance(word_index, dict)
Example #13
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_boston_housing(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = boston_housing.load_data() assert len(x_train) == len(y_train) assert len(x_test) == len(y_test)
Example #14
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_cifar(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = cifar10.load_data() assert len(x_train) == len(y_train) == 50000 assert len(x_test) == len(y_test) == 10000 (x_train, y_train), (x_test, y_test) = cifar100.load_data('fine') assert len(x_train) == len(y_train) == 50000 assert len(x_test) == len(y_test) == 10000 (x_train, y_train), (x_test, y_test) = cifar100.load_data('coarse') assert len(x_train) == len(y_train) == 50000 assert len(x_test) == len(y_test) == 10000
Example #15
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_reuters(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = reuters.load_data() assert len(x_train) == len(y_train) assert len(x_test) == len(y_test) assert len(x_train) + len(x_test) == 11228 (x_train, y_train), (x_test, y_test) = reuters.load_data(maxlen=10) assert len(x_train) == len(y_train) assert len(x_test) == len(y_test) word_index = reuters.get_word_index() assert isinstance(word_index, dict)
Example #16
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_mnist(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = mnist.load_data() assert len(x_train) == len(y_train) == 60000 assert len(x_test) == len(y_test) == 10000
Example #17
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_cifar(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = cifar10.load_data() assert len(x_train) == len(y_train) == 50000 assert len(x_test) == len(y_test) == 10000 (x_train, y_train), (x_test, y_test) = cifar100.load_data('fine') assert len(x_train) == len(y_train) == 50000 assert len(x_test) == len(y_test) == 10000 (x_train, y_train), (x_test, y_test) = cifar100.load_data('coarse') assert len(x_train) == len(y_train) == 50000 assert len(x_test) == len(y_test) == 10000
Example #18
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_boston_housing(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = boston_housing.load_data() assert len(x_train) == len(y_train) assert len(x_test) == len(y_test)
Example #19
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_cifar(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = cifar10.load_data() assert len(x_train) == len(y_train) == 50000 assert len(x_test) == len(y_test) == 10000 (x_train, y_train), (x_test, y_test) = cifar100.load_data('fine') assert len(x_train) == len(y_train) == 50000 assert len(x_test) == len(y_test) == 10000 (x_train, y_train), (x_test, y_test) = cifar100.load_data('coarse') assert len(x_train) == len(y_train) == 50000 assert len(x_test) == len(y_test) == 10000
Example #20
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_reuters(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = reuters.load_data() assert len(x_train) == len(y_train) assert len(x_test) == len(y_test) assert len(x_train) + len(x_test) == 11228 (x_train, y_train), (x_test, y_test) = reuters.load_data(maxlen=10) assert len(x_train) == len(y_train) assert len(x_test) == len(y_test) word_index = reuters.get_word_index() assert isinstance(word_index, dict)
Example #21
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_mnist(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = mnist.load_data() assert len(x_train) == len(y_train) == 60000 assert len(x_test) == len(y_test) == 10000
Example #22
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_imdb(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = imdb.load_data() (x_train, y_train), (x_test, y_test) = imdb.load_data(maxlen=40) assert len(x_train) == len(y_train) assert len(x_test) == len(y_test) word_index = imdb.get_word_index() assert isinstance(word_index, dict)
Example #23
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_boston_housing(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = boston_housing.load_data() assert len(x_train) == len(y_train) assert len(x_test) == len(y_test)
Example #24
Source File: datasets.py From DEC-keras with MIT License | 5 votes |
def load_mnist(): # the data, shuffled and split between train and test sets from keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x = np.concatenate((x_train, x_test)) y = np.concatenate((y_train, y_test)) x = x.reshape((x.shape[0], -1)) x = np.divide(x, 255.) print('MNIST samples', x.shape) return x, y
Example #25
Source File: datasets.py From DEC-keras with MIT License | 5 votes |
def load_fashion_mnist(): from keras.datasets import fashion_mnist # this requires keras>=2.0.9 (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() x = np.concatenate((x_train, x_test)) y = np.concatenate((y_train, y_test)) x = x.reshape((x.shape[0], -1)) x = np.divide(x, 255.) print('Fashion MNIST samples', x.shape) return x, y
Example #26
Source File: datasets.py From DEC-keras with MIT License | 5 votes |
def load_cifar10(data_path='./data/cifar10'): from keras.datasets import cifar10 (train_x, train_y), (test_x, test_y) = cifar10.load_data() x = np.concatenate((train_x, test_x)) y = np.concatenate((train_y, test_y)).reshape((60000,)) # if features are ready, return them import os.path if os.path.exists(data_path + '/cifar10_features.npy'): return np.load(data_path + '/cifar10_features.npy'), y # extract features features = np.zeros((60000, 4096)) for i in range(6): idx = range(i*10000, (i+1)*10000) print("The %dth 10000 samples" % i) features[idx] = extract_vgg16_features(x[idx]) # scale to [0,1] from sklearn.preprocessing import MinMaxScaler features = MinMaxScaler().fit_transform(features) # save features np.save(data_path + '/cifar10_features.npy', features) print('features saved to ' + data_path + '/cifar10_features.npy') return features, y
Example #27
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_boston_housing(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = boston_housing.load_data() assert len(x_train) == len(y_train) assert len(x_test) == len(y_test)
Example #28
Source File: test_datasets.py From CAPTCHA-breaking with MIT License | 5 votes |
def test_reuters(self): print('reuters') (X_train, y_train), (X_test, y_test) = reuters.load_data()
Example #29
Source File: test_datasets.py From CAPTCHA-breaking with MIT License | 5 votes |
def test_mnist(self): print('mnist') (X_train, y_train), (X_test, y_test) = mnist.load_data() print(X_train.shape) print(X_test.shape) print(y_train.shape) print(y_test.shape)
Example #30
Source File: test_datasets.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_cifar(): # only run data download tests 20% of the time # to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: (x_train, y_train), (x_test, y_test) = cifar10.load_data() assert len(x_train) == len(y_train) == 50000 assert len(x_test) == len(y_test) == 10000 (x_train, y_train), (x_test, y_test) = cifar100.load_data('fine') assert len(x_train) == len(y_train) == 50000 assert len(x_test) == len(y_test) == 10000 (x_train, y_train), (x_test, y_test) = cifar100.load_data('coarse') assert len(x_train) == len(y_train) == 50000 assert len(x_test) == len(y_test) == 10000