Python data.Dataset() Examples
The following are 7
code examples of data.Dataset().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
data
, or try the search function
.
Example #1
Source File: test_ccf.py From CCF-BDCI2019-Multi-person-Face-Recognition-Competition-Baseline with MIT License | 6 votes |
def get_featurs(model, test_list): device = torch.device("cuda") pbar = tqdm(total=len(test_list)) for idx, img_path in enumerate(test_list): pbar.update(1) dataset = Dataset(root=img_path, phase='test', input_shape=(1, 112, 112)) trainloader = data.DataLoader(dataset, batch_size=1) for img in trainloader: img = img.to(device) if idx == 0: feature = model(img) feature = feature.detach().cpu().numpy() features = feature else: feature = model(img) feature = feature.detach().cpu().numpy() features = np.concatenate((features, feature), axis=0) return features
Example #2
Source File: training.py From fully-convolutional-point-network with MIT License | 6 votes |
def start_data_loader(sess, enqueue_op, queue_placeholders, model, dataset, config): """ Starts a data loader thread coordinated by a tf.train.Coordinator() Args: sess: tf.Session enqueue_op: tf.FIFOQueue.enqueue queue_placeholders: dict model: FCPN dataset: Dataset config: dict, session configuration parameters Returns: coord: tf.train.Coordinator loader_thread: Thread """ coord = tf.train.Coordinator() loader_thread = threading.Thread(target=load_data_into_queue, args=( sess, enqueue_op, queue_placeholders, coord, model, dataset, config)) loader_thread.daemon = True loader_thread.start() return coord, loader_thread
Example #3
Source File: adversarial.py From Performance-RNN-PyTorch with MIT License | 5 votes |
def batch_generator(args): print('-' * 70) dataset = Dataset(args.dataset_path, verbose=True) print(dataset) return dataset.batches(args.batch_size, args.window_size, args.stride_size)
Example #4
Source File: train.py From Performance-RNN-PyTorch with MIT License | 5 votes |
def load_dataset(): global data_path dataset = Dataset(data_path, verbose=True) dataset_size = len(dataset.samples) assert dataset_size > 0 return dataset
Example #5
Source File: main.py From kdtf with MIT License | 5 votes |
def main(): parser = get_parser() args = parser.parse_args() setup(args) dataset = data.Dataset(args) tf.reset_default_graph() if args.model_type == "student": teacher_model = None if args.load_teacher_from_checkpoint: teacher_model = model.BigModel(args, "teacher") teacher_model.start_session() teacher_model.load_model_from_file(args.load_teacher_checkpoint_dir) print("Verify Teacher State before Training Student") teacher_model.run_inference(dataset) student_model = model.SmallModel(args, "student") student_model.start_session() student_model.train(dataset, teacher_model) # Testing student model on the best model based on validation set student_model.load_model_from_file(args.checkpoint_dir) student_model.run_inference(dataset) if args.load_teacher_from_checkpoint: print("Verify Teacher State After Training student Model") teacher_model.run_inference(dataset) teacher_model.close_session() student_model.close_session() else: teacher_model = model.BigModel(args, "teacher") teacher_model.start_session() teacher_model.train(dataset) # Testing teacher model on the best model based on validation set teacher_model.load_model_from_file(args.checkpoint_dir) teacher_model.run_inference(dataset) teacher_model.close_session()
Example #6
Source File: train_and_summarize.py From miccai-2016-surgical-activity-rec with Apache License 2.0 | 4 votes |
def main(): """ Run training and export summaries to data_dir/logs for a single test setup and a single set of parameters. Summaries include a) TensorBoard summaries, b) the latest train/test accuracies and raw edit distances (status.txt), c) the latest test predictions along with test ground-truth labels (test_label_seqs.pkl, test_prediction_seqs.pkl), d) visualizations as training progresses (test_visualizations_######.png).""" args = define_and_process_args() print('\n', 'ARGUMENTS', '\n\n', args, '\n') log_dir = get_log_dir(args) print('\n', 'LOG DIRECTORY', '\n\n', log_dir, '\n') standardized_data_path = os.path.join(args.data_dir, args.data_filename) if not os.path.exists(standardized_data_path): message = '%s does not exist.' % standardized_data_path raise ValueError(message) dataset = data.Dataset(standardized_data_path) train_raw_seqs, test_raw_seqs = dataset.get_splits(args.test_users) train_triplets = [data.prepare_raw_seq(seq) for seq in train_raw_seqs] test_triplets = [data.prepare_raw_seq(seq) for seq in test_raw_seqs] train_input_seqs, train_reset_seqs, train_label_seqs = zip(*train_triplets) test_input_seqs, test_reset_seqs, test_label_seqs = zip(*test_triplets) Model = eval('models.' + args.model_type + 'Model') input_size = dataset.input_size target_size = dataset.num_classes # This is just to satisfy a low-CPU requirement on our cluster # when using GPUs. if 'CUDA_VISIBLE_DEVICES' in os.environ: config = tf.ConfigProto(intra_op_parallelism_threads=2, inter_op_parallelism_threads=2) else: config = None with tf.Session(config=config) as sess: model = Model(input_size, target_size, args.num_layers, args.hidden_layer_size, args.init_scale, args.dropout_keep_prob) optimizer = optimizers.Optimizer( model.loss, args.num_train_sweeps, args.initial_learning_rate, args.num_initial_sweeps, args.num_sweeps_per_decay, args.decay_factor, args.max_global_grad_norm) train(sess, model, optimizer, log_dir, args.batch_size, args.num_sweeps_per_summary, args.num_sweeps_per_save, train_input_seqs, train_reset_seqs, train_label_seqs, test_input_seqs, test_reset_seqs, test_label_seqs)
Example #7
Source File: training.py From fully-convolutional-point-network with MIT License | 4 votes |
def load_data_into_queue(sess, enqueue_op, queue_placeholders, coord, model, dataset, config): """ Fills a FIFO queue with one epoch of training samples, then one epoch of validation samples. Alternatingly, for config['training']['max_epochs'] epochs. Args: sess: tf.Session enqueue_op: tf.FIFOQueue.enqueue queue_placeholders: dict coord: tf.train.Coordinator() model: FCPN dataset: Dataset config: dict, session configuration parameters """ sample_generators = { 'train': dataset.sample_generator('train', config['dataset']['training_samples']['num_points'], config['training']['data_augmentation']), 'val': dataset.sample_generator('val', config['dataset']['training_samples']['num_points']) } pointnet_locations = model.get_pointnet_locations() point_features = np.ones(config['dataset']['training_samples']['num_points']) pointnet_features = np.zeros(config['model']['pointnet']['num']) constant_features = np.expand_dims(np.concatenate([point_features, pointnet_features]), axis=1) for _ in range(config['training']['max_epochs']): for s in ['train', 'val']: num_enqueued_samples = 0 for sample_i in range(dataset.get_num_samples(s)): if coord.should_stop(): return input_points_xyz, output_voxelgrid = next(sample_generators[s]) output_voxelvector = output_voxelgrid.reshape(-1) points_xyz_and_pointnet_locations = np.concatenate( (input_points_xyz, pointnet_locations), axis=0) voxel_weights = dataset.get_voxel_weights(output_voxelvector) feed_dict = {queue_placeholders['input_points_pl']: points_xyz_and_pointnet_locations, queue_placeholders['input_features_pl']: constant_features, queue_placeholders['output_voxels_pl']: output_voxelvector, queue_placeholders['output_voxel_weights_pl']: voxel_weights} sess.run(enqueue_op, feed_dict=feed_dict) num_enqueued_samples += 1 # If its the last sample of the batch, repeat it to complete # the last batch if num_enqueued_samples == dataset.get_num_samples(s): num_duplicate_samples = dataset.get_num_batches(s, config['training']['batch_size']) * config['training']['batch_size'] - num_enqueued_samples for _ in range(num_duplicate_samples): sess.run(enqueue_op, feed_dict=feed_dict)