Python keras.utils.conv_utils.conv_output_length() Examples
The following are 30
code examples of keras.utils.conv_utils.conv_output_length().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.utils.conv_utils
, or try the search function
.
Example #1
Source File: sn.py From Coloring-greyscale-images with MIT License | 7 votes |
def compute_output_shape(self, input_shape): if self.data_format == 'channels_last': space = input_shape[1:-1] new_space = [] for i in range(len(space)): new_dim = conv_utils.conv_output_length( space[i], self.kernel_size[i], padding=self.padding, stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim) return (input_shape[0],) + tuple(new_space) + (self.filters,) if self.data_format == 'channels_first': space = input_shape[2:] new_space = [] for i in range(len(space)): new_dim = conv_utils.conv_output_length( space[i], self.kernel_size[i], padding=self.padding, stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim) return (input_shape[0], self.filters) + tuple(new_space)
Example #2
Source File: depthwise_conv2d.py From keras-mobilenet with MIT License | 6 votes |
def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': rows = input_shape[2] cols = input_shape[3] elif self.data_format == 'channels_last': rows = input_shape[1] cols = input_shape[2] rows = conv_utils.conv_output_length(rows, self.kernel_size[0], self.padding, self.strides[0]) cols = conv_utils.conv_output_length(cols, self.kernel_size[1], self.padding, self.strides[1]) if self.data_format == 'channels_first': return (input_shape[0], self.filters, rows, cols) elif self.data_format == 'channels_last': return (input_shape[0], rows, cols, self.filters)
Example #3
Source File: mobilenet.py From keras-FP16-test with Apache License 2.0 | 6 votes |
def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': rows = input_shape[2] cols = input_shape[3] out_filters = input_shape[1] * self.depth_multiplier elif self.data_format == 'channels_last': rows = input_shape[1] cols = input_shape[2] out_filters = input_shape[3] * self.depth_multiplier rows = conv_utils.conv_output_length(rows, self.kernel_size[0], self.padding, self.strides[0]) cols = conv_utils.conv_output_length(cols, self.kernel_size[1], self.padding, self.strides[1]) if self.data_format == 'channels_first': return (input_shape[0], out_filters, rows, cols) elif self.data_format == 'channels_last': return (input_shape[0], rows, cols, out_filters)
Example #4
Source File: mobilenet.py From deep-learning-models with MIT License | 6 votes |
def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': rows = input_shape[2] cols = input_shape[3] out_filters = input_shape[1] * self.depth_multiplier elif self.data_format == 'channels_last': rows = input_shape[1] cols = input_shape[2] out_filters = input_shape[3] * self.depth_multiplier rows = conv_utils.conv_output_length(rows, self.kernel_size[0], self.padding, self.strides[0]) cols = conv_utils.conv_output_length(cols, self.kernel_size[1], self.padding, self.strides[1]) if self.data_format == 'channels_first': return (input_shape[0], out_filters, rows, cols) elif self.data_format == 'channels_last': return (input_shape[0], rows, cols, out_filters)
Example #5
Source File: mobilenetv2.py From mobilenet_v2_keras with MIT License | 6 votes |
def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': rows = input_shape[2] cols = input_shape[3] out_filters = input_shape[1] * self.depth_multiplier elif self.data_format == 'channels_last': rows = input_shape[1] cols = input_shape[2] out_filters = input_shape[3] * self.depth_multiplier rows = conv_utils.conv_output_length(rows, self.kernel_size[0], self.padding, self.strides[0]) cols = conv_utils.conv_output_length(cols, self.kernel_size[1], self.padding, self.strides[1]) if self.data_format == 'channels_first': return (input_shape[0], out_filters, rows, cols) elif self.data_format == 'channels_last': return (input_shape[0], rows, cols, out_filters)
Example #6
Source File: mobilenets-checkpoint.py From CBAM-keras with MIT License | 6 votes |
def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': rows = input_shape[2] cols = input_shape[3] out_filters = input_shape[1] * self.depth_multiplier elif self.data_format == 'channels_last': rows = input_shape[1] cols = input_shape[2] out_filters = input_shape[3] * self.depth_multiplier rows = conv_utils.conv_output_length(rows, self.kernel_size[0], self.padding, self.strides[0]) cols = conv_utils.conv_output_length(cols, self.kernel_size[1], self.padding, self.strides[1]) if self.data_format == 'channels_first': return (input_shape[0], out_filters, rows, cols) elif self.data_format == 'channels_last': return (input_shape[0], rows, cols, out_filters)
Example #7
Source File: mobilenets.py From CBAM-keras with MIT License | 6 votes |
def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': rows = input_shape[2] cols = input_shape[3] out_filters = input_shape[1] * self.depth_multiplier elif self.data_format == 'channels_last': rows = input_shape[1] cols = input_shape[2] out_filters = input_shape[3] * self.depth_multiplier rows = conv_utils.conv_output_length(rows, self.kernel_size[0], self.padding, self.strides[0]) cols = conv_utils.conv_output_length(cols, self.kernel_size[1], self.padding, self.strides[1]) if self.data_format == 'channels_first': return (input_shape[0], out_filters, rows, cols) elif self.data_format == 'channels_last': return (input_shape[0], rows, cols, out_filters)
Example #8
Source File: ConvolutionalMoE.py From mixture-of-experts with GNU General Public License v3.0 | 6 votes |
def compute_output_shape(self, input_shape): if self.data_format == 'channels_last': space = input_shape[1:-1] new_space = [] for i in range(len(space)): new_dim = conv_utils.conv_output_length( space[i], self.kernel_size[i], padding=self.padding, stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim) return (input_shape[0],) + tuple(new_space) + (self.n_filters,) if self.data_format == 'channels_first': space = input_shape[2:] new_space = [] for i in range(len(space)): new_dim = conv_utils.conv_output_length( space[i], self.kernel_size[i], padding=self.padding, stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim) return (input_shape[0], self.n_filters) + tuple(new_space)
Example #9
Source File: gc_mobilenets.py From keras-global-context-networks with MIT License | 6 votes |
def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': rows = input_shape[2] cols = input_shape[3] out_filters = input_shape[1] * self.depth_multiplier elif self.data_format == 'channels_last': rows = input_shape[1] cols = input_shape[2] out_filters = input_shape[3] * self.depth_multiplier rows = conv_utils.conv_output_length(rows, self.kernel_size[0], self.padding, self.strides[0]) cols = conv_utils.conv_output_length(cols, self.kernel_size[1], self.padding, self.strides[1]) if self.data_format == 'channels_first': return (input_shape[0], out_filters, rows, cols) elif self.data_format == 'channels_last': return (input_shape[0], rows, cols, out_filters)
Example #10
Source File: se_mobilenets.py From keras-squeeze-excite-network with MIT License | 6 votes |
def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': rows = input_shape[2] cols = input_shape[3] out_filters = input_shape[1] * self.depth_multiplier elif self.data_format == 'channels_last': rows = input_shape[1] cols = input_shape[2] out_filters = input_shape[3] * self.depth_multiplier rows = conv_utils.conv_output_length(rows, self.kernel_size[0], self.padding, self.strides[0]) cols = conv_utils.conv_output_length(cols, self.kernel_size[1], self.padding, self.strides[1]) if self.data_format == 'channels_first': return input_shape[0], out_filters, rows, cols elif self.data_format == 'channels_last': return input_shape[0], rows, cols, out_filters
Example #11
Source File: utils.py From face_landmark_dnn with MIT License | 6 votes |
def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': rows = input_shape[2] cols = input_shape[3] out_filters = input_shape[1] * self.depth_multiplier elif self.data_format == 'channels_last': rows = input_shape[1] cols = input_shape[2] out_filters = input_shape[3] * self.depth_multiplier rows = conv_utils.conv_output_length(rows, self.kernel_size[0], self.padding, self.strides[0]) cols = conv_utils.conv_output_length(cols, self.kernel_size[1], self.padding, self.strides[1]) if self.data_format == 'channels_first': return (input_shape[0], out_filters, rows, cols) elif self.data_format == 'channels_last': return (input_shape[0], rows, cols, out_filters)
Example #12
Source File: train_mobilenets.py From face_landmark_dnn with MIT License | 6 votes |
def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': rows = input_shape[2] cols = input_shape[3] out_filters = input_shape[1] * self.depth_multiplier elif self.data_format == 'channels_last': rows = input_shape[1] cols = input_shape[2] out_filters = input_shape[3] * self.depth_multiplier rows = conv_utils.conv_output_length(rows, self.kernel_size[0], self.padding, self.strides[0]) cols = conv_utils.conv_output_length(cols, self.kernel_size[1], self.padding, self.strides[1]) if self.data_format == 'channels_first': return (input_shape[0], out_filters, rows, cols) elif self.data_format == 'channels_last': return (input_shape[0], rows, cols, out_filters)
Example #13
Source File: se_mobilenets.py From TF.Keras-Commonly-used-models with Apache License 2.0 | 6 votes |
def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': rows = input_shape[2] cols = input_shape[3] out_filters = input_shape[1] * self.depth_multiplier elif self.data_format == 'channels_last': rows = input_shape[1] cols = input_shape[2] out_filters = input_shape[3] * self.depth_multiplier rows = conv_utils.conv_output_length(rows, self.kernel_size[0], self.padding, self.strides[0]) cols = conv_utils.conv_output_length(cols, self.kernel_size[1], self.padding, self.strides[1]) if self.data_format == 'channels_first': return (input_shape[0], out_filters, rows, cols) elif self.data_format == 'channels_last': return (input_shape[0], rows, cols, out_filters)
Example #14
Source File: mobile_net_fixed.py From kaggle-carvana-2017 with MIT License | 6 votes |
def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': rows = input_shape[2] cols = input_shape[3] out_filters = input_shape[1] * self.depth_multiplier elif self.data_format == 'channels_last': rows = input_shape[1] cols = input_shape[2] out_filters = input_shape[3] * self.depth_multiplier rows = conv_utils.conv_output_length(rows, self.kernel_size[0], self.padding, self.strides[0]) cols = conv_utils.conv_output_length(cols, self.kernel_size[1], self.padding, self.strides[1]) if self.data_format == 'channels_first': return (input_shape[0], out_filters, rows, cols) elif self.data_format == 'channels_last': return (input_shape[0], rows, cols, out_filters)
Example #15
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_conv_input_length(): assert conv_utils.conv_input_length(None, 7, 'same', 1) is None assert conv_utils.conv_input_length(112, 7, 'same', 1) == 112 assert conv_utils.conv_input_length(112, 7, 'same', 2) == 223 assert conv_utils.conv_input_length(28, 5, 'valid', 1) == 32 assert conv_utils.conv_input_length(14, 5, 'valid', 2) == 31 assert conv_utils.conv_input_length(36, 5, 'full', 1) == 32 assert conv_utils.conv_input_length(18, 5, 'full', 2) == 31 with pytest.raises(AssertionError): conv_utils.conv_output_length(18, 5, 'diagonal', 2)
Example #16
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_conv_output_length(): assert conv_utils.conv_output_length(None, 7, 'same', 1) is None assert conv_utils.conv_output_length(224, 7, 'same', 1) == 224 assert conv_utils.conv_output_length(224, 7, 'same', 2) == 112 assert conv_utils.conv_output_length(32, 5, 'valid', 1) == 28 assert conv_utils.conv_output_length(32, 5, 'valid', 2) == 14 assert conv_utils.conv_output_length(32, 5, 'causal', 1) == 32 assert conv_utils.conv_output_length(32, 5, 'causal', 2) == 16 assert conv_utils.conv_output_length(32, 5, 'full', 1) == 36 assert conv_utils.conv_output_length(32, 5, 'full', 2) == 18 with pytest.raises(AssertionError): conv_utils.conv_output_length(32, 5, 'diagonal', 2)
Example #17
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_conv_input_length(): assert conv_utils.conv_input_length(None, 7, 'same', 1) is None assert conv_utils.conv_input_length(112, 7, 'same', 1) == 112 assert conv_utils.conv_input_length(112, 7, 'same', 2) == 223 assert conv_utils.conv_input_length(28, 5, 'valid', 1) == 32 assert conv_utils.conv_input_length(14, 5, 'valid', 2) == 31 assert conv_utils.conv_input_length(36, 5, 'full', 1) == 32 assert conv_utils.conv_input_length(18, 5, 'full', 2) == 31 with pytest.raises(AssertionError): conv_utils.conv_output_length(18, 5, 'diagonal', 2)
Example #18
Source File: DepthwiseConv3D.py From keras-DepthwiseConv3D with MIT License | 5 votes |
def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': depth = input_shape[2] rows = input_shape[3] cols = input_shape[4] out_filters = self.groups * self.depth_multiplier elif self.data_format == 'channels_last': depth = input_shape[1] rows = input_shape[2] cols = input_shape[3] out_filters = self.groups * self.depth_multiplier depth = conv_utils.conv_output_length(depth, self.kernel_size[0], self.padding, self.strides[0]) rows = conv_utils.conv_output_length(rows, self.kernel_size[1], self.padding, self.strides[1]) cols = conv_utils.conv_output_length(cols, self.kernel_size[2], self.padding, self.strides[2]) if self.data_format == 'channels_first': return (input_shape[0], out_filters, depth, rows, cols) elif self.data_format == 'channels_last': return (input_shape[0], depth, rows, cols, out_filters)
Example #19
Source File: qrnn.py From nn_playground with MIT License | 5 votes |
def compute_output_shape(self, input_shape): if isinstance(input_shape, list): input_shape = input_shape[0] length = input_shape[1] if length: length = conv_output_length(length + self.window_size - 1, self.window_size, 'valid', self.strides[0]) if self.return_sequences: return (input_shape[0], length, self.units) else: return (input_shape[0], self.units)
Example #20
Source File: gcnn.py From nn_playground with MIT License | 5 votes |
def compute_output_shape(self, input_shape): length = input_shape[1] if length: length = conv_output_length(length + self.window_size - 1, self.window_size, 'valid', self.strides[0]) return (input_shape[0], length, self.output_dim)
Example #21
Source File: capsule_layers.py From SegCaps with Apache License 2.0 | 5 votes |
def compute_output_shape(self, input_shape): space = input_shape[1:-2] new_space = [] for i in range(len(space)): new_dim = conv_output_length( space[i], self.kernel_size, padding=self.padding, stride=self.strides, dilation=1) new_space.append(new_dim) return (input_shape[0],) + tuple(new_space) + (self.num_capsule, self.num_atoms)
Example #22
Source File: capslayers.py From deepcaps with MIT License | 5 votes |
def build(self, input_shape): self.h_i, self.w_i, self.ch_i, self.n_i = input_shape[1:5] self.h_j, self.w_j = [conv_utils.conv_output_length(input_shape[i + 1], self.kernel_size[i], padding=self.padding, stride=self.strides[i], dilation=self.dilation_rate[i]) for i in (0, 1)] self.ah_j, self.aw_j = [conv_utils.conv_output_length(input_shape[i + 1], self.kernel_size[i], padding=self.padding, stride=1, dilation=self.dilation_rate[i]) for i in (0, 1)] self.w_shape = self.kernel_size + (self.ch_i, self.n_i, self.ch_j, self.n_j) self.w = self.add_weight(shape=self.w_shape, initializer=self.kernel_initializer, name='kernel', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.built = True
Example #23
Source File: capslayers.py From deepcaps with MIT License | 5 votes |
def compute_output_shape(self, input_shape): space = input_shape[1:-2] new_space = [] for i in range(len(space)): new_dim = conv_output_length(space[i], self.kernel_size, padding=self.padding, stride=self.strides, dilation=1) new_space.append(new_dim) return (input_shape[0],) + tuple(new_space) + (self.num_capsule, self.num_atoms)
Example #24
Source File: gram.py From subjective-functions with MIT License | 5 votes |
def reduce_layer(a=0.4, padding_mode='valid'): # A 5-tap Gaussian pyramid generating kernel from Burt & Adelson 1983. kernel_1d = [0.25 - a/2, 0.25, a, 0.25, 0.25 - a/2] #kernel_2d = np.outer(kernel_1d, kernel_1d) # This doesn't seem very computationally bright; but there you have it. #kernel_4d = np.zeros((5, 5, 3, 3), 'float32') #kernel_4d[:,:,0,0] = kernel_2d #kernel_4d[:,:,1,1] = kernel_2d #kernel_4d[:,:,2,2] = kernel_2d kernel_3d = np.zeros((5, 1, 3, 3), 'float32') kernel_3d[:, 0, 0, 0] = kernel_1d kernel_3d[:, 0, 1, 1] = kernel_1d kernel_3d[:, 0, 2, 2] = kernel_1d def fn(x): return K.conv2d(K.conv2d(x, kernel_3d, strides=(2,1)), K.permute_dimensions(kernel_3d, (1, 0, 2, 3)), strides = (1, 2)) def shape(input_shape): assert len(input_shape) == 4 assert K.image_data_format() == 'channels_last' space = input_shape[1:-1] new_space = [] for i, dim in enumerate(space): new_dim = conv_utils.conv_output_length( dim, 5, padding=padding_mode, stride=2) new_space.append(new_dim) return (input_shape[0],) + tuple(new_space) + (input_shape[3],) return Lambda(fn, shape)
Example #25
Source File: custom_objects.py From keras_mixnets with MIT License | 5 votes |
def compute_output_shape(self, input_shape): space = input_shape[1:-1] new_space = [] for i in range(len(space)): new_dim = conv_utils.conv_output_length( space[i], filter_size=1, padding=self.padding, stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim) return (input_shape[0],) + tuple(new_space) + (self.filters,)
Example #26
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_conv_output_length(): assert conv_utils.conv_output_length(None, 7, 'same', 1) is None assert conv_utils.conv_output_length(224, 7, 'same', 1) == 224 assert conv_utils.conv_output_length(224, 7, 'same', 2) == 112 assert conv_utils.conv_output_length(32, 5, 'valid', 1) == 28 assert conv_utils.conv_output_length(32, 5, 'valid', 2) == 14 assert conv_utils.conv_output_length(32, 5, 'causal', 1) == 32 assert conv_utils.conv_output_length(32, 5, 'causal', 2) == 16 assert conv_utils.conv_output_length(32, 5, 'full', 1) == 36 assert conv_utils.conv_output_length(32, 5, 'full', 2) == 18 with pytest.raises(AssertionError): conv_utils.conv_output_length(32, 5, 'diagonal', 2)
Example #27
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_conv_output_length(): assert conv_utils.conv_output_length(None, 7, 'same', 1) is None assert conv_utils.conv_output_length(224, 7, 'same', 1) == 224 assert conv_utils.conv_output_length(224, 7, 'same', 2) == 112 assert conv_utils.conv_output_length(32, 5, 'valid', 1) == 28 assert conv_utils.conv_output_length(32, 5, 'valid', 2) == 14 assert conv_utils.conv_output_length(32, 5, 'causal', 1) == 32 assert conv_utils.conv_output_length(32, 5, 'causal', 2) == 16 assert conv_utils.conv_output_length(32, 5, 'full', 1) == 36 assert conv_utils.conv_output_length(32, 5, 'full', 2) == 18 with pytest.raises(AssertionError): conv_utils.conv_output_length(32, 5, 'diagonal', 2)
Example #28
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_conv_input_length(): assert conv_utils.conv_input_length(None, 7, 'same', 1) is None assert conv_utils.conv_input_length(112, 7, 'same', 1) == 112 assert conv_utils.conv_input_length(112, 7, 'same', 2) == 223 assert conv_utils.conv_input_length(28, 5, 'valid', 1) == 32 assert conv_utils.conv_input_length(14, 5, 'valid', 2) == 31 assert conv_utils.conv_input_length(36, 5, 'full', 1) == 32 assert conv_utils.conv_input_length(18, 5, 'full', 2) == 31 with pytest.raises(AssertionError): conv_utils.conv_output_length(18, 5, 'diagonal', 2)
Example #29
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_conv_output_length(): assert conv_utils.conv_output_length(None, 7, 'same', 1) is None assert conv_utils.conv_output_length(224, 7, 'same', 1) == 224 assert conv_utils.conv_output_length(224, 7, 'same', 2) == 112 assert conv_utils.conv_output_length(32, 5, 'valid', 1) == 28 assert conv_utils.conv_output_length(32, 5, 'valid', 2) == 14 assert conv_utils.conv_output_length(32, 5, 'causal', 1) == 32 assert conv_utils.conv_output_length(32, 5, 'causal', 2) == 16 assert conv_utils.conv_output_length(32, 5, 'full', 1) == 36 assert conv_utils.conv_output_length(32, 5, 'full', 2) == 18 with pytest.raises(AssertionError): conv_utils.conv_output_length(32, 5, 'diagonal', 2)
Example #30
Source File: conv_utils_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_conv_input_length(): assert conv_utils.conv_input_length(None, 7, 'same', 1) is None assert conv_utils.conv_input_length(112, 7, 'same', 1) == 112 assert conv_utils.conv_input_length(112, 7, 'same', 2) == 223 assert conv_utils.conv_input_length(28, 5, 'valid', 1) == 32 assert conv_utils.conv_input_length(14, 5, 'valid', 2) == 31 assert conv_utils.conv_input_length(36, 5, 'full', 1) == 32 assert conv_utils.conv_input_length(18, 5, 'full', 2) == 31 with pytest.raises(AssertionError): conv_utils.conv_output_length(18, 5, 'diagonal', 2)