Python datasets.imdb.imdb.__init__() Examples
The following are 30
code examples of datasets.imdb.imdb.__init__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
datasets.imdb.imdb
, or try the search function
.
Example #1
Source File: dvmm.py From RGB-N with MIT License | 6 votes |
def __init__(self, image_set, year, dist_path=None): imdb.__init__(self, image_set) self._year = year self._image_set = image_set.split('dist_')[1] self._dist_path = self._get_default_path() if dist_path is None \ else dist_path self._data_path=self._dist_path self._classes = ('__background__', # always index 0 'tamper','authentic') self._classes = ('authentic', # always index 0 'tamper') #self.classes =('authentic', # always index 0 #'splicing','removal') self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._image_ext = {'.png','.jpg','.tif','.bmp','.JPG'} self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #2
Source File: face.py From face-py-faster-rcnn with MIT License | 6 votes |
def __init__(self, image_set, split, devkit_path): imdb.__init__(self, 'wider') self._image_set = image_set # {'train', 'test'} self._split = split # {1, 2, ..., 10} self._devkit_path = devkit_path # /data2/hzjiang/Data/CS2 # self._data_path = os.path.join(self._devkit_path, 'data') self._data_path = self._devkit_path; self._classes = ('__background__', # always index 0 'face') self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes))) self._image_ext = ['.png'] self._image_index, self._gt_roidb = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.selective_search_roidb # Specific config options self.config = {'cleanup' : True, 'use_salt' : True, 'top_k' : 2000} assert os.path.exists(self._devkit_path), \ 'Devkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #3
Source File: nist.py From RGB-N with MIT License | 6 votes |
def __init__(self, image_set, year, dist_path=None): imdb.__init__(self, image_set) self._year = year self._image_set = image_set.split('dist_')[1] self._dist_path = self._get_default_path() if dist_path is None \ else dist_path self._data_path=self._dist_path self._classes = ('__background__', # always index 0 'tamper','authentic') self._classes = ('__background__', # always index 0 'splicing','removal','manipulation') self._classes = ('authentic', # always index 0 'tamper') self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._image_ext = {'.png','.jpg','.tif','.bmp','.JPG'} self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #4
Source File: swapme.py From RGB-N with MIT License | 6 votes |
def __init__(self, image_set, year, dist_path=None): imdb.__init__(self, image_set) self._year = year self._image_set = image_set.split('face_')[1] self._dist_path = self._get_default_path() if dist_path is None \ else dist_path self._data_path=self._dist_path self._classes = ('__background__', # always index 0 'tamper','authentic') #self._classes = ('authentic', # always index 0 #'tamper') self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._image_ext = {'.png','.jpg','.tif','.bmp','.JPG'} self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #5
Source File: kaist.py From MSDS-RCNN with MIT License | 6 votes |
def __init__(self, image_set, modality, data_filter, imp_type, devkit_path=None): imdb.__init__(self, 'kaist_' + image_set + '_' + modality + '_' + data_filter + imp_type) self._image_set = image_set self._modality = modality if modality == 'multi': print('set cfg.MULTI_INPUT -> True') cfg.MULTI_INPUT = True self._data_filter = data_filter self._imp_type = imp_type self._data_path = self._get_default_path() self._classes = ('__background__', # always index 0 'person') self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._image_ext = '.png' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb assert os.path.exists(self._data_path), \ 'Kaist path does not exist: {}'.format(self._data_path)
Example #6
Source File: coco.py From RGB-N with MIT License | 6 votes |
def __init__(self, image_set, year, dist_path=None): imdb.__init__(self, image_set) self._year = year self._image_set = image_set.split('coco_')[1] self._dist_path = self._get_default_path() if dist_path is None \ else dist_path self._data_path=self._dist_path #self._data_path = os.path.join(self._dist_path, image_set) self._classes = ('__background__', # always index 0 'tamper','authentic') self._classes = ('authentic', # always index 0 'tamper') self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) #self._image_ext = {'.jpg','.tif'} self._image_ext = {'.png','.jpg','.tif','.bmp','.JPG'} self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #7
Source File: dist_fake.py From RGB-N with MIT License | 6 votes |
def __init__(self, image_set, year, dist_path=None): imdb.__init__(self, image_set) self._year = year self._image_set = image_set.split('dist_')[1] self._dist_path = self._get_default_path() if dist_path is None \ else dist_path self._data_path=self._dist_path self._classes = ('__background__', # always index 0 'tamper','authentic') self._classes = ('authentic', # always index 0 'tamper') #self.classes =('authentic', # always index 0 #'splicing','removal') self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._image_ext = {'.png','.jpg','.tif','.bmp','.JPG'} self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #8
Source File: coco.py From pytorch-faster-rcnn with MIT License | 5 votes |
def __init__(self, image_set, year): imdb.__init__(self, 'coco_' + year + '_' + image_set) # COCO specific config options self.config = {'use_salt': True, 'cleanup': True} # name, paths self._year = year self._image_set = image_set self._data_path = osp.join(cfg.DATA_DIR, 'coco') # load COCO API, classes, class <-> id mappings self._COCO = COCO(self._get_ann_file()) cats = self._COCO.loadCats(self._COCO.getCatIds()) self._classes = tuple(['__background__'] + [c['name'] for c in cats]) self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._class_to_coco_cat_id = dict(list(zip([c['name'] for c in cats], self._COCO.getCatIds()))) self._image_index = self._load_image_set_index() # Default to roidb handler self.set_proposal_method('gt') self.competition_mode(False) # Some image sets are "views" (i.e. subsets) into others. # For example, minival2014 is a random 5000 image subset of val2014. # This mapping tells us where the view's images and proposals come from. self._view_map = { 'minival2014': 'val2014', # 5k val2014 subset 'valminusminival2014': 'val2014', # val2014 \setminus minival2014 'test-dev2015': 'test2015', } coco_name = image_set + year # e.g., "val2014" self._data_name = (self._view_map[coco_name] if coco_name in self._view_map else coco_name) # Dataset splits that have ground-truth annotations (test splits # do not have gt annotations) self._gt_splits = ('train', 'val', 'minival')
Example #9
Source File: coco.py From iter-reason with MIT License | 5 votes |
def __init__(self, image_set, year): imdb.__init__(self, 'coco_' + year + '_' + image_set) # COCO specific config options self.config = {'use_crowd': False, 'use_salt': True, 'cleanup': True} # name, paths self._year = year self._image_set = image_set self._data_path = osp.join(cfg.DATA_DIR, 'coco') # load COCO API, classes, class <-> id mappings self._COCO = COCO(self._get_ann_file()) cats = self._COCO.loadCats(self._COCO.getCatIds()) self._classes = tuple(['__background__'] + [c['name'] for c in cats]) self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._class_to_coco_cat_id = dict(list(zip([c['name'] for c in cats], self._COCO.getCatIds()))) self._image_index = self._load_image_set_index() # Default to roidb handler self.set_proposal_method('gt') # Some image sets are "views" (i.e. subsets) into others. # For example, minival2014 is a random 5000 image subset of val2014. # This mapping tells us where the view's images and proposals come from. self._view_map = { 'minival2014': 'val2014', # 5k val2014 subset 'valminusminival2014': 'val2014', # val2014 \setminus minival2014 'test-dev2015': 'test2015', } coco_name = image_set + year # e.g., "val2014" self._data_name = (self._view_map[coco_name] if coco_name in self._view_map else coco_name) # Dataset splits that have ground-truth annotations (test splits # do not have gt annotations) self._gt_splits = ('train', 'val', 'minival')
Example #10
Source File: pascal_voc.py From py-R-FCN with MIT License | 5 votes |
def __init__(self, image_set, year, devkit_path=None): imdb.__init__(self, 'voc_' + year + '_' + image_set) self._year = year self._image_set = image_set self._devkit_path = self._get_default_path() if devkit_path is None \ else devkit_path self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year) self._classes = ('__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.selective_search_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4' # PASCAL specific config options self.config = {'cleanup' : True, 'use_salt' : True, 'use_diff' : False, 'matlab_eval' : False, 'rpn_file' : None, 'min_size' : 2} assert os.path.exists(self._devkit_path), \ 'VOCdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #11
Source File: mydataset.py From pytorch-faster-rcnn with MIT License | 5 votes |
def __init__(self, image_set, dataset): name = dataset + '_' + image_set imdb.__init__(self, name) self._image_set = image_set self._root_path = '/media/rgh/rgh-data/Dataset/'+dataset#.capitalize() self._data_path = os.path.join(self._root_path, 'image', image_set) self._parsing_label_path = os.path.join(self._root_path, 'label', image_set) # self._classes = ('__background__', # always index 0 # 'face', 'hair', 'U-clothes', 'L-arm','R-arm', # 'pants', 'L-leg', 'R-leg', 'dress','L-shoe', # 'R-shoe') self._classes = ('__background__', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', 'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', 'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe') self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._image_ext = '.jpg' self._parsing_label_ext = '.png' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb self.config = {'cleanup': False, 'use_diff': True, 'matlab_eval': False, 'rpn_file': None, 'min_size': 2} assert os.path.exists(self._root_path), \ 'dataset path does not exist: {}'.format(self._root_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #12
Source File: pascal_voc_rbg.py From dafrcnn-pytorch with MIT License | 5 votes |
def __init__(self, image_set, year, devkit_path=None): imdb.__init__(self, 'voc_' + year + '_' + image_set) self._year = year self._image_set = image_set self._devkit_path = self._get_default_path() if devkit_path is None \ else devkit_path self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year) self._classes = ('__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4' # PASCAL specific config options self.config = {'cleanup': True, 'use_salt': True, 'use_diff': False, 'matlab_eval': False, 'rpn_file': None} assert os.path.exists(self._devkit_path), \ 'VOCdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #13
Source File: pascal_voc_rbg.py From dafrcnn-pytorch with MIT License | 5 votes |
def __init__(self, image_set, year, devkit_path=None): imdb.__init__(self, 'voc_' + year + '_' + image_set) self._year = year self._image_set = image_set self._devkit_path = self._get_default_path() if devkit_path is None \ else devkit_path self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year) self._classes = ('__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4' # PASCAL specific config options self.config = {'cleanup': True, 'use_salt': True, 'use_diff': False, 'matlab_eval': False, 'rpn_file': None} assert os.path.exists(self._devkit_path), \ 'VOCdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #14
Source File: pascal_voc.py From centerNet-deep-sort with GNU General Public License v3.0 | 5 votes |
def __init__(self, image_set, year, use_diff=False): name = 'voc_' + year + '_' + image_set if use_diff: name += '_diff' imdb.__init__(self, name) self._year = year self._image_set = image_set self._devkit_path = self._get_default_path() self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year) self._classes = ('__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4' # PASCAL specific config options self.config = {'cleanup': True, 'use_salt': True, 'use_diff': use_diff, 'matlab_eval': False, 'rpn_file': None} assert os.path.exists(self._devkit_path), \ 'VOCdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #15
Source File: pascal_voc_rbg.py From DetNet_pytorch with MIT License | 5 votes |
def __init__(self, image_set, year, devkit_path=None): imdb.__init__(self, 'voc_' + year + '_' + image_set) self._year = year self._image_set = image_set self._devkit_path = self._get_default_path() if devkit_path is None \ else devkit_path self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year) self._classes = ('__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4' # PASCAL specific config options self.config = {'cleanup': True, 'use_salt': True, 'use_diff': False, 'matlab_eval': False, 'rpn_file': None} assert os.path.exists(self._devkit_path), \ 'VOCdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #16
Source File: coco.py From DetNet_pytorch with MIT License | 5 votes |
def __init__(self, image_set, year): imdb.__init__(self, 'coco_' + year + '_' + image_set) # COCO specific config options self.config = {'use_salt': True, 'cleanup': True} # name, paths self._year = year self._image_set = image_set self._data_path = osp.join(cfg.DATA_DIR, 'coco') # load COCO API, classes, class <-> id mappings self._COCO = COCO(self._get_ann_file()) cats = self._COCO.loadCats(self._COCO.getCatIds()) self._classes = tuple(['__background__'] + [c['name'] for c in cats]) self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._class_to_coco_cat_id = dict(list(zip([c['name'] for c in cats], self._COCO.getCatIds()))) self._image_index = self._load_image_set_index() # Default to roidb handler self.set_proposal_method('gt') self.competition_mode(False) # Some image sets are "views" (i.e. subsets) into others. # For example, minival2014 is a random 5000 image subset of val2014. # This mapping tells us where the view's images and proposals come from. self._view_map = { 'minival2014': 'val2014', # 5k val2014 subset 'valminusminival2014': 'val2014', # val2014 \setminus minival2014 'test-dev2015': 'test2015', 'valminuscapval2014': 'val2014', 'capval2014': 'val2014', 'captest2014': 'val2014' } coco_name = image_set + year # e.g., "val2014" self._data_name = (self._view_map[coco_name] if coco_name in self._view_map else coco_name) # Dataset splits that have ground-truth annotations (test splits # do not have gt annotations) self._gt_splits = ('train', 'val', 'minival')
Example #17
Source File: coco.py From CIOD with MIT License | 5 votes |
def __init__(self, image_set, year): imdb.__init__(self, 'coco_' + year + '_' + image_set) # COCO specific config options self.config = {'use_salt': True, 'cleanup': True} # name, paths self._year = year self._image_set = image_set self._data_path = osp.join(cfg.DATA_DIR, 'coco') # load COCO API, classes, class <-> id mappings self._COCO = COCO(self._get_ann_file()) cats = self._COCO.loadCats(self._COCO.getCatIds()) self._classes = tuple(['__background__'] + [c['name'] for c in cats]) self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._class_to_coco_cat_id = dict(list(zip([c['name'] for c in cats], self._COCO.getCatIds()))) self._image_index = self._load_image_set_index() # Default to roidb handler self.set_proposal_method('gt') self.competition_mode(False) # Some image sets are "views" (i.e. subsets) into others. # For example, minival2014 is a random 5000 image subset of val2014. # This mapping tells us where the view's images and proposals come from. self._view_map = { 'minival2014': 'val2014', # 5k val2014 subset 'valminusminival2014': 'val2014', # val2014 \setminus minival2014 'test-dev2015': 'test2015', 'valminuscapval2014': 'val2014', 'capval2014': 'val2014', 'captest2014': 'val2014' } coco_name = image_set + year # e.g., "val2014" self._data_name = (self._view_map[coco_name] if coco_name in self._view_map else coco_name) # Dataset splits that have ground-truth annotations (test splits # do not have gt annotations) self._gt_splits = ('train', 'val', 'minival')
Example #18
Source File: ade.py From iter-reason with MIT License | 5 votes |
def __init__(self, image_set, count=5): imdb.__init__(self, 'ade_%s_%d' % (image_set,count)) self._image_set = image_set self._root_path = osp.join(cfg.DATA_DIR, 'ADE') self._name_file = osp.join(self._root_path, 'objectnames.txt') self._count_file = osp.join(self._root_path, 'objectcounts.txt') self._anno_file = osp.join(self._root_path, self._image_set + '.txt') with open(self._anno_file) as fid: image_index = fid.readlines() self._image_index = [ii.strip() for ii in image_index] with open(self._name_file) as fid: raw_names = fid.readlines() self._raw_names = [n.strip().replace(' ', '_') for n in raw_names] self._len_raw = len(self._raw_names) with open(self._count_file) as fid: raw_counts = fid.readlines() self._raw_counts = np.array([int(n.strip()) for n in raw_counts]) # First class is always background self._ade_inds = [0] + list(np.where(self._raw_counts >= count)[0]) self._classes = ['__background__'] for idx in self._ade_inds: if idx == 0: continue ade_name = self._raw_names[idx] self._classes.append(ade_name) self._classes = tuple(self._classes) self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self.set_proposal_method('gt')
Example #19
Source File: visual_genome.py From iter-reason with MIT License | 5 votes |
def __init__(self, image_set, count=5): imdb.__init__(self, 'visual_genome_%s_%d' % (image_set, count)) self._image_set = image_set self._root_path = osp.join(cfg.DATA_DIR, 'visual_genome') self._name_file = osp.join(self._root_path, 'synsets.txt') self._anno_file = osp.join(self._root_path, self._image_set + '.json') self._image_file = osp.join(self._root_path, 'image_data.json') with open(self._name_file) as fid: lines = fid.readlines() self._raw_names = [] self._raw_counts = [] for line in lines: name, cc = line.strip().split(':') cc = int(cc) self._raw_names.append(name) self._raw_counts.append(cc) self._len_raw = len(self._raw_names) self._raw_counts = np.array(self._raw_counts) # First class is always background self._vg_inds = [0] + list(np.where(self._raw_counts >= count)[0]) self._classes = ['__background__'] for idx in self._vg_inds: if idx == 0: continue vg_name = self._raw_names[idx] self._classes.append(vg_name) self._classes = tuple(self._classes) self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self.set_proposal_method('gt') # Call to get one self.roidb
Example #20
Source File: pascal_voc_rbg.py From One-Shot-Object-Detection with MIT License | 5 votes |
def __init__(self, image_set, year, devkit_path=None): imdb.__init__(self, 'voc_' + year + '_' + image_set) self._year = year self._image_set = image_set self._devkit_path = self._get_default_path() if devkit_path is None \ else devkit_path self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year) self._classes = ('__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4' # PASCAL specific config options self.config = {'cleanup': True, 'use_salt': True, 'use_diff': False, 'matlab_eval': False, 'rpn_file': None} assert os.path.exists(self._devkit_path), \ 'VOCdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #21
Source File: coco.py From uai-sdk with Apache License 2.0 | 5 votes |
def __init__(self, image_set, year): imdb.__init__(self, 'coco_' + year + '_' + image_set) # COCO specific config options self.config = {'top_k' : 2000, 'use_salt' : True, 'cleanup' : True, 'crowd_thresh' : 0.7, 'min_size' : 2} # name, paths self._year = year self._image_set = image_set self._data_path = osp.join(cfg.DATA_DIR, 'coco') # load COCO API, classes, class <-> id mappings self._COCO = COCO(self._get_ann_file()) cats = self._COCO.loadCats(self._COCO.getCatIds()) self._classes = tuple(['__background__'] + [c['name'] for c in cats]) self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes))) self._class_to_coco_cat_id = dict(zip([c['name'] for c in cats], self._COCO.getCatIds())) self._image_index = self._load_image_set_index() # Default to roidb handler self.set_proposal_method('selective_search') self.competition_mode(False) # Some image sets are "views" (i.e. subsets) into others. # For example, minival2014 is a random 5000 image subset of val2014. # This mapping tells us where the view's images and proposals come from. self._view_map = { 'minival2014' : 'val2014', # 5k val2014 subset 'valminusminival2014' : 'val2014', # val2014 \setminus minival2014 } coco_name = image_set + year # e.g., "val2014" self._data_name = (self._view_map[coco_name] if self._view_map.has_key(coco_name) else coco_name) # Dataset splits that have ground-truth annotations (test splits # do not have gt annotations) self._gt_splits = ('train', 'val', 'minival')
Example #22
Source File: pascal_voc.py From uai-sdk with Apache License 2.0 | 5 votes |
def __init__(self, image_set, year, devkit_path=None): imdb.__init__(self, 'voc_' + year + '_' + image_set) self._year = year self._image_set = image_set self._devkit_path = self._get_default_path() if devkit_path is None \ else devkit_path self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year) self._classes = ('__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.selective_search_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4' # PASCAL specific config options self.config = {'cleanup' : True, 'use_salt' : True, 'use_diff' : False, 'matlab_eval' : False, 'rpn_file' : None, 'min_size' : 2} assert os.path.exists(self._devkit_path), \ 'VOCdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #23
Source File: coco.py From faster-rcnn.pytorch with MIT License | 5 votes |
def __init__(self, image_set, year): imdb.__init__(self, 'coco_' + year + '_' + image_set) # COCO specific config options self.config = {'use_salt': True, 'cleanup': True} # name, paths self._year = year self._image_set = image_set self._data_path = osp.join(cfg.DATA_DIR, 'coco') # load COCO API, classes, class <-> id mappings self._COCO = COCO(self._get_ann_file()) cats = self._COCO.loadCats(self._COCO.getCatIds()) self._classes = tuple(['__background__'] + [c['name'] for c in cats]) self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._class_to_coco_cat_id = dict(list(zip([c['name'] for c in cats], self._COCO.getCatIds()))) self._image_index = self._load_image_set_index() # Default to roidb handler self.set_proposal_method('gt') self.competition_mode(False) # Some image sets are "views" (i.e. subsets) into others. # For example, minival2014 is a random 5000 image subset of val2014. # This mapping tells us where the view's images and proposals come from. self._view_map = { 'minival2014': 'val2014', # 5k val2014 subset 'valminusminival2014': 'val2014', # val2014 \setminus minival2014 'test-dev2015': 'test2015', 'valminuscapval2014': 'val2014', 'capval2014': 'val2014', 'captest2014': 'val2014' } coco_name = image_set + year # e.g., "val2014" self._data_name = (self._view_map[coco_name] if coco_name in self._view_map else coco_name) # Dataset splits that have ground-truth annotations (test splits # do not have gt annotations) self._gt_splits = ('train', 'val', 'minival')
Example #24
Source File: pascal_voc_rbg.py From faster-rcnn.pytorch with MIT License | 5 votes |
def __init__(self, image_set, year, devkit_path=None): imdb.__init__(self, 'voc_' + year + '_' + image_set) self._year = year self._image_set = image_set self._devkit_path = self._get_default_path() if devkit_path is None \ else devkit_path self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year) self._classes = ('__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4' # PASCAL specific config options self.config = {'cleanup': True, 'use_salt': True, 'use_diff': False, 'matlab_eval': False, 'rpn_file': None} assert os.path.exists(self._devkit_path), \ 'VOCdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #25
Source File: coco.py From pytorch-lighthead with MIT License | 5 votes |
def __init__(self, image_set, year): imdb.__init__(self, 'coco_' + year + '_' + image_set) # COCO specific config options self.config = {'use_salt': True, 'cleanup': True} # name, paths self._year = year self._image_set = image_set self._data_path = osp.join(cfg.DATA_DIR, 'coco') # load COCO API, classes, class <-> id mappings self._COCO = COCO(self._get_ann_file()) cats = self._COCO.loadCats(self._COCO.getCatIds()) self._classes = tuple(['__background__'] + [c['name'] for c in cats]) self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._class_to_coco_cat_id = dict(list(zip([c['name'] for c in cats], self._COCO.getCatIds()))) self._image_index = self._load_image_set_index() # Default to roidb handler self.set_proposal_method('gt') self.competition_mode(False) # Some image sets are "views" (i.e. subsets) into others. # For example, minival2014 is a random 5000 image subset of val2014. # This mapping tells us where the view's images and proposals come from. self._view_map = { 'minival2014': 'val2014', # 5k val2014 subset 'valminusminival2014': 'val2014', # val2014 \setminus minival2014 'test-dev2015': 'test2015', 'valminuscapval2014': 'val2014', 'capval2014': 'val2014', 'captest2014': 'val2014' } coco_name = image_set + year # e.g., "val2014" self._data_name = (self._view_map[coco_name] if coco_name in self._view_map else coco_name) # Dataset splits that have ground-truth annotations (test splits # do not have gt annotations) self._gt_splits = ('train', 'val', 'minival')
Example #26
Source File: pascal_voc_rbg.py From pytorch-lighthead with MIT License | 5 votes |
def __init__(self, image_set, year, devkit_path=None): imdb.__init__(self, 'voc_' + year + '_' + image_set) self._year = year self._image_set = image_set self._devkit_path = self._get_default_path() if devkit_path is None \ else devkit_path self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year) self._classes = ('__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4' # PASCAL specific config options self.config = {'cleanup': True, 'use_salt': True, 'use_diff': False, 'matlab_eval': False, 'rpn_file': None} assert os.path.exists(self._devkit_path), \ 'VOCdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #27
Source File: coco.py From Faster-RCNN_TF with MIT License | 5 votes |
def __init__(self, image_set, year): imdb.__init__(self, 'coco_' + year + '_' + image_set) # COCO specific config options self.config = {'top_k' : 2000, 'use_salt' : True, 'cleanup' : True, 'crowd_thresh' : 0.7, 'min_size' : 2} # name, paths self._year = year self._image_set = image_set self._data_path = osp.join(cfg.DATA_DIR, 'coco') # load COCO API, classes, class <-> id mappings self._COCO = COCO(self._get_ann_file()) cats = self._COCO.loadCats(self._COCO.getCatIds()) self._classes = tuple(['__background__'] + [c['name'] for c in cats]) self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes))) self._class_to_coco_cat_id = dict(zip([c['name'] for c in cats], self._COCO.getCatIds())) self._image_index = self._load_image_set_index() # Default to roidb handler self.set_proposal_method('selective_search') self.competition_mode(False) # Some image sets are "views" (i.e. subsets) into others. # For example, minival2014 is a random 5000 image subset of val2014. # This mapping tells us where the view's images and proposals come from. self._view_map = { 'minival2014' : 'val2014', # 5k val2014 subset 'valminusminival2014' : 'val2014', # val2014 \setminus minival2014 } coco_name = image_set + year # e.g., "val2014" self._data_name = (self._view_map[coco_name] if self._view_map.has_key(coco_name) else coco_name) # Dataset splits that have ground-truth annotations (test splits # do not have gt annotations) self._gt_splits = ('train', 'val', 'minival')
Example #28
Source File: pascal_voc.py From Faster-RCNN_TF with MIT License | 5 votes |
def __init__(self, image_set, year, devkit_path=None): imdb.__init__(self, 'voc_' + year + '_' + image_set) self._year = year self._image_set = image_set self._devkit_path = self._get_default_path() if devkit_path is None \ else devkit_path self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year) self._classes = ('__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler #self._roidb_handler = self.selective_search_roidb self._roidb_handler = self.gt_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4' # PASCAL specific config options self.config = {'cleanup' : True, 'use_salt' : True, 'use_diff' : False, 'matlab_eval' : False, 'rpn_file' : None, 'min_size' : 2} assert os.path.exists(self._devkit_path), \ 'VOCdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #29
Source File: pascal_voc.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 5 votes |
def __init__(self, image_set, year, use_diff=False): name = 'voc_' + year + '_' + image_set if use_diff: name += '_diff' imdb.__init__(self, name) self._year = year self._image_set = image_set self._devkit_path = self._get_default_path() self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year) self._classes = ( # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.selective_search_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4' # PASCAL specific config options self.config = {'cleanup': True, 'use_salt': True, 'use_diff': use_diff, 'matlab_eval': False, 'rpn_file': None} assert os.path.exists(self._devkit_path), \ 'VOCdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)
Example #30
Source File: pascal_voc_rbg.py From FPN_Pytorch with MIT License | 5 votes |
def __init__(self, image_set, year, devkit_path=None): imdb.__init__(self, 'voc_' + year + '_' + image_set) self._year = year self._image_set = image_set self._devkit_path = self._get_default_path() if devkit_path is None \ else devkit_path self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year) self._classes = ('__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes))))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4' # PASCAL specific config options self.config = {'cleanup': True, 'use_salt': True, 'use_diff': False, 'matlab_eval': False, 'rpn_file': None} assert os.path.exists(self._devkit_path), \ 'VOCdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path)