Python util.load_data() Examples
The following are 2
code examples of util.load_data().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
util
, or try the search function
.
Example #1
Source File: train.py From DeepLearning-OCR with Apache License 2.0 | 5 votes |
def main(): # img_width, img_height = 48, 48 img_width, img_height = 200, 60 img_channels = 1 # batch_size = 1024 batch_size = 32 nb_epoch = 1000 post_correction = False save_dir = 'save_model/' + str(datetime.now()).split('.')[0].split()[0] + '/' # model is saved corresponding to the datetime train_data_dir = 'train_data/ip_train/' # train_data_dir = 'train_data/single_1000000/' val_data_dir = 'train_data/ip_val/' test_data_dir = 'test_data//' weights_file_path = 'save_model/2016-10-27/weights.11-1.58.hdf5' char_set, char2idx = get_char_set(train_data_dir) nb_classes = len(char_set) max_nb_char = get_maxnb_char(train_data_dir) label_set = get_label_set(train_data_dir) # val 'char_set:', char_set print 'nb_classes:', nb_classes print 'max_nb_char:', max_nb_char print 'size_label_set:', len(label_set) model = build_shallow(img_channels, img_width, img_height, max_nb_char, nb_classes) # build CNN architecture # model.load_weights(weights_file_path) # load trained model val_data = load_data(val_data_dir, max_nb_char, img_width, img_height, img_channels, char_set, char2idx) # val_data = None train_data = load_data(train_data_dir, max_nb_char, img_width, img_height, img_channels, char_set, char2idx) train(model, batch_size, nb_epoch, save_dir, train_data, val_data, char_set) # train_data = load_data(train_data_dir, max_nb_char, img_width, img_height, img_channels, char_set, char2idx) # test(model, train_data, char_set, label_set, post_correction) # val_data = load_data(val_data_dir, max_nb_char, img_width, img_height, img_channels, char_set, char2idx) # test(model, val_data, char_set, label_set, post_correction) # test_data = load_data(test_data_dir, max_nb_char, img_width, img_height, img_channels, char_set, char2idx) # test(model, test_data, char_set, label_set, post_correction)
Example #2
Source File: model.py From sfcn-opi with MIT License | 4 votes |
def data_prepare(print_image_shape=False, print_input_shape=False): """ prepare data for model. :param print_image_shape: print image shape if set true. :param print_input_shape: print input shape(after categorize) if set true :return: list of input to model """ def reshape_mask(origin, cate, num_class): return cate.reshape((origin.shape[0], origin.shape[1], origin.shape[2], num_class)) train_imgs, train_det_masks, train_cls_masks = load_data(data_path=DATA_DIR, type='train') valid_imgs, valid_det_masks, valid_cls_masks = load_data(data_path=DATA_DIR, type='validation') test_imgs, test_det_masks, test_cls_masks = load_data(data_path=DATA_DIR, type='test') if print_image_shape: print('Image shape print below: ') print('train_imgs: {}, train_det_masks: {}, train_cls_masks: {}'.format(train_imgs.shape, train_det_masks.shape, train_cls_masks.shape)) print('valid_imgs: {}, valid_det_masks: {}, validn_cls_masks: {}'.format(valid_imgs.shape, valid_det_masks.shape, valid_cls_masks.shape)) print('test_imgs: {}, test_det_masks: {}, test_cls_masks: {}'.format(test_imgs.shape, test_det_masks.shape, test_cls_masks.shape)) print() train_det = np_utils.to_categorical(train_det_masks, 2) train_det = reshape_mask(train_det_masks, train_det, 2) train_cls = np_utils.to_categorical(train_cls_masks, 5) train_cls = reshape_mask(train_cls_masks, train_cls, 5) valid_det = np_utils.to_categorical(valid_det_masks, 2) valid_det = reshape_mask(valid_det_masks, valid_det, 2) valid_cls = np_utils.to_categorical(valid_cls_masks, 5) valid_cls = reshape_mask(valid_cls_masks, valid_cls, 5) test_det = np_utils.to_categorical(test_det_masks, 2) test_det = reshape_mask(test_det_masks, test_det, 2) test_cls = np_utils.to_categorical(test_cls_masks, 5) test_cls = reshape_mask(test_cls_masks, test_cls, 5) if print_input_shape: print('input shape print below: ') print('train_imgs: {}, train_det: {}, train_cls: {}'.format(train_imgs.shape, train_det.shape, train_cls.shape)) print('valid_imgs: {}, valid_det: {}, validn_cls: {}'.format(valid_imgs.shape, valid_det.shape, valid_cls.shape)) print('test_imgs: {}, test_det: {}, test_cls: {}'.format(test_imgs.shape, test_det.shape, test_cls.shape)) print() return [train_imgs, train_det, train_cls, valid_imgs, valid_det, valid_cls, test_imgs, test_det, test_cls]