Python datasets.cifar10() Examples
The following are 2
code examples of datasets.cifar10().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
datasets
, or try the search function
.
Example #1
Source File: main_train_networks.py From curriculum_learning with GNU General Public License v3.0 | 6 votes |
def load_dataset(dataset_name): if dataset_name.startswith('cifar100_subset'): superclass_idx = int(dataset_name[len("cifar100_subset_"):]) dataset = datasets.cifar100_subset.Cifar100_Subset(supeclass_idx=superclass_idx, normalize=False) elif dataset_name == "cifar10": dataset = datasets.cifar10.Cifar10(normalize=False) elif dataset_name == "cifar100": dataset = datasets.cifar100.Cifar100(normalize=False) else: print("do not support datset: %s" % dataset_name) raise ValueError return dataset
Example #2
Source File: vgg_train.py From keras-deepcv with MIT License | 4 votes |
def parse_args(): """ Parse command line arguments. Parameters: None Returns: parser arguments """ parser = argparse.ArgumentParser(description='LeNet model') optional = parser._action_groups.pop() required = parser.add_argument_group('required arguments') required.add_argument('--net', dest='net', help='Choice of network architecture', choices=['vgg16', 'vgg19']) optional.add_argument('--dataset', dest='dataset', help='Choice of dataset to train model', choices=[None, 'mnist', 'cifar10'], default=None) optional.add_argument('--print_model', dest='print_model', help='Print LeNet model', action='store_true') optional.add_argument('--train_model', dest='train_model', help='Train LeNet on MNIST', action='store_true') optional.add_argument('-s', '--save_weights', dest='save_weights', help='Save the trained weights', default=None) optional.add_argument('-w', '--weights', dest='weights', help='Path to weights (hdf5) file', default=None) optional.add_argument('-e', '--epochs', dest='epochs', help='Number of epochs for training', type=int, default=20) optional.add_argument('--data_augmentation', dest='data_augmentation', help='Use data augmentations for input', action='store_true') optional.add_argument('--viz_training', dest='viz_training', help='Visualize the training curve', action='store_true') parser._action_groups.append(optional) return parser.parse_args()