Python reader.ptb_raw_data() Examples

The following are 20 code examples of reader.ptb_raw_data(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module reader , or try the search function .
Example #1
Source File: ptb.py    From tensor-fsmn with MIT License 6 votes vote down vote up
def main():
    sys.stdout.write("start ptb")
    raw_data = reader.ptb_raw_data("")
    train_data, valid_data, test_data, word_to_id = raw_data

    with tf.Graph().as_default(), tf.Session() as session:
        initializer = tf.random_uniform_initializer(-0.04, 0.04)
        with tf.variable_scope("model", reuse=None, initializer=initializer):
            model = PTBModel()

        saver = tf.train.Saver()
        tf.initialize_all_variables().run()
        model.train_writer = tf.train.SummaryWriter('./train', graph=session.graph)

        for i in range(13):
            sys.stdout.write("Epoch: %d\n" % (i + 1))
            train_perplexity = model.train(session, train_data)
            sys.stdout.write("Epoch: %d Train Perplexity: %.3f\n" % (i + 1, train_perplexity))
            valid_perplexity = model.evaluate(session, valid_data)
            sys.stdout.write("Epoch: %d Valid Perplexity: %.3f\n" % (i + 1, valid_perplexity))
            test_perplexity = model.evaluate(session, test_data)
            sys.stdout.write("Epoch: %d Test Perplexity: %.3f\n" % (i + 1, test_perplexity))

        # model.predict(session, test_data, word_to_id)
        saver.save(session, 'model.ckpt') 
Example #2
Source File: reader_test.py    From hands-detection with MIT License 5 votes vote down vote up
def testPtbRawData(self):
    tmpdir = tf.test.get_temp_dir()
    for suffix in "train", "valid", "test":
      filename = os.path.join(tmpdir, "ptb.%s.txt" % suffix)
      with tf.gfile.GFile(filename, "w") as fh:
        fh.write(self._string_data)
    # Smoke test
    output = reader.ptb_raw_data(tmpdir)
    self.assertEqual(len(output), 4) 
Example #3
Source File: reader_test.py    From g-tensorflow-models with Apache License 2.0 5 votes vote down vote up
def testPtbRawData(self):
    tmpdir = tf.test.get_temp_dir()
    for suffix in "train", "valid", "test":
      filename = os.path.join(tmpdir, "ptb.%s.txt" % suffix)
      with tf.gfile.GFile(filename, "w") as fh:
        fh.write(self._string_data)
    # Smoke test
    output = reader.ptb_raw_data(tmpdir)
    self.assertEqual(len(output), 4) 
Example #4
Source File: reader_test.py    From HumanRecognition with MIT License 5 votes vote down vote up
def testPtbRawData(self):
    tmpdir = tf.test.get_temp_dir()
    for suffix in "train", "valid", "test":
      filename = os.path.join(tmpdir, "ptb.%s.txt" % suffix)
      with tf.gfile.GFile(filename, "w") as fh:
        fh.write(self._string_data)
    # Smoke test
    output = reader.ptb_raw_data(tmpdir)
    self.assertEqual(len(output), 4) 
Example #5
Source File: reader_test.py    From object_detection_with_tensorflow with MIT License 5 votes vote down vote up
def testPtbRawData(self):
    tmpdir = tf.test.get_temp_dir()
    for suffix in "train", "valid", "test":
      filename = os.path.join(tmpdir, "ptb.%s.txt" % suffix)
      with tf.gfile.GFile(filename, "w") as fh:
        fh.write(self._string_data)
    # Smoke test
    output = reader.ptb_raw_data(tmpdir)
    self.assertEqual(len(output), 4) 
Example #6
Source File: reader_test.py    From object_detection_kitti with Apache License 2.0 5 votes vote down vote up
def testPtbRawData(self):
    tmpdir = tf.test.get_temp_dir()
    for suffix in "train", "valid", "test":
      filename = os.path.join(tmpdir, "ptb.%s.txt" % suffix)
      with tf.gfile.GFile(filename, "w") as fh:
        fh.write(self._string_data)
    # Smoke test
    output = reader.ptb_raw_data(tmpdir)
    self.assertEqual(len(output), 4) 
Example #7
Source File: reader_test.py    From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 5 votes vote down vote up
def testPtbRawData(self):
    tmpdir = tf.test.get_temp_dir()
    for suffix in "train", "valid", "test":
      filename = os.path.join(tmpdir, "ptb.%s.txt" % suffix)
      with tf.gfile.GFile(filename, "w") as fh:
        fh.write(self._string_data)
    # Smoke test
    output = reader.ptb_raw_data(tmpdir)
    self.assertEqual(len(output), 4) 
Example #8
Source File: reader_test.py    From ActionRecognition with MIT License 5 votes vote down vote up
def testPtbRawData(self):
        tmpdir = tf.test.get_temp_dir()
        for suffix in "train", "valid", "test":
            filename = os.path.join(tmpdir, "ptb.%s.txt" % suffix)
            with tf.gfile.GFile(filename, "w") as fh:
                fh.write(self._string_data)
        # Smoke test
        output = reader.ptb_raw_data(tmpdir)
        self.assertEqual(len(output), 4) 
Example #9
Source File: rhn_train.py    From iss-rnns with Apache License 2.0 5 votes vote down vote up
def get_data(data_path, dataset):
  if dataset == 'ptb':
    import reader
    raw_data = reader.ptb_raw_data(data_path)
  elif dataset == 'enwik8':
    from data import reader
    raw_data = reader.enwik8_raw_data(data_path)
  elif dataset == 'text8':
    from data import reader
    raw_data = reader.text8_raw_data(data_path)
  return reader, raw_data 
Example #10
Source File: reader_test.py    From iss-rnns with Apache License 2.0 5 votes vote down vote up
def testPtbRawData(self):
    tmpdir = tf.test.get_temp_dir()
    for suffix in "train", "valid", "test":
      filename = os.path.join(tmpdir, "ptb.%s.txt" % suffix)
      with tf.gfile.GFile(filename, "w") as fh:
        fh.write(self._string_data)
    # Smoke test
    output = reader.ptb_raw_data(tmpdir)
    self.assertEqual(len(output), 4) 
Example #11
Source File: reader_test.py    From Gun-Detector with Apache License 2.0 5 votes vote down vote up
def testPtbRawData(self):
    tmpdir = tf.test.get_temp_dir()
    for suffix in "train", "valid", "test":
      filename = os.path.join(tmpdir, "ptb.%s.txt" % suffix)
      with tf.gfile.GFile(filename, "w") as fh:
        fh.write(self._string_data)
    # Smoke test
    output = reader.ptb_raw_data(tmpdir)
    self.assertEqual(len(output), 4) 
Example #12
Source File: reader_test.py    From yolo_v2 with Apache License 2.0 5 votes vote down vote up
def testPtbRawData(self):
    tmpdir = tf.test.get_temp_dir()
    for suffix in "train", "valid", "test":
      filename = os.path.join(tmpdir, "ptb.%s.txt" % suffix)
      with tf.gfile.GFile(filename, "w") as fh:
        fh.write(self._string_data)
    # Smoke test
    output = reader.ptb_raw_data(tmpdir)
    self.assertEqual(len(output), 4) 
Example #13
Source File: reader_test.py    From DOTA_models with Apache License 2.0 5 votes vote down vote up
def testPtbRawData(self):
    tmpdir = tf.test.get_temp_dir()
    for suffix in "train", "valid", "test":
      filename = os.path.join(tmpdir, "ptb.%s.txt" % suffix)
      with tf.gfile.GFile(filename, "w") as fh:
        fh.write(self._string_data)
    # Smoke test
    output = reader.ptb_raw_data(tmpdir)
    self.assertEqual(len(output), 4) 
Example #14
Source File: ptb_word_lm.py    From hands-detection with MIT License 4 votes vote down vote up
def main(_):
  if not FLAGS.data_path:
    raise ValueError("Must set --data_path to PTB data directory")

  raw_data = reader.ptb_raw_data(FLAGS.data_path)
  train_data, valid_data, test_data, _ = raw_data

  config = get_config()
  eval_config = get_config()
  eval_config.batch_size = 1
  eval_config.num_steps = 1

  with tf.Graph().as_default():
    initializer = tf.random_uniform_initializer(-config.init_scale,
                                                config.init_scale)

    with tf.name_scope("Train"):
      train_input = PTBInput(config=config, data=train_data, name="TrainInput")
      with tf.variable_scope("Model", reuse=None, initializer=initializer):
        m = PTBModel(is_training=True, config=config, input_=train_input)
      tf.summary.scalar("Training Loss", m.cost)
      tf.summary.scalar("Learning Rate", m.lr)

    with tf.name_scope("Valid"):
      valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
      with tf.variable_scope("Model", reuse=True, initializer=initializer):
        mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
      tf.summary.scalar("Validation Loss", mvalid.cost)

    with tf.name_scope("Test"):
      test_input = PTBInput(config=eval_config, data=test_data, name="TestInput")
      with tf.variable_scope("Model", reuse=True, initializer=initializer):
        mtest = PTBModel(is_training=False, config=eval_config,
                         input_=test_input)

    sv = tf.train.Supervisor(logdir=FLAGS.save_path)
    with sv.managed_session() as session:
      for i in range(config.max_max_epoch):
        lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)
        m.assign_lr(session, config.learning_rate * lr_decay)

        print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
        train_perplexity = run_epoch(session, m, eval_op=m.train_op,
                                     verbose=True)
        print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
        valid_perplexity = run_epoch(session, mvalid)
        print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))

      test_perplexity = run_epoch(session, mtest)
      print("Test Perplexity: %.3f" % test_perplexity)

      if FLAGS.save_path:
        print("Saving model to %s." % FLAGS.save_path)
        sv.saver.save(session, FLAGS.save_path, global_step=sv.global_step) 
Example #15
Source File: ptb_word_lm.py    From DOTA_models with Apache License 2.0 4 votes vote down vote up
def main(_):
  if not FLAGS.data_path:
    raise ValueError("Must set --data_path to PTB data directory")

  raw_data = reader.ptb_raw_data(FLAGS.data_path)
  train_data, valid_data, test_data, _ = raw_data

  config = get_config()
  eval_config = get_config()
  eval_config.batch_size = 1
  eval_config.num_steps = 1

  with tf.Graph().as_default():
    initializer = tf.random_uniform_initializer(-config.init_scale,
                                                config.init_scale)

    with tf.name_scope("Train"):
      train_input = PTBInput(config=config, data=train_data, name="TrainInput")
      with tf.variable_scope("Model", reuse=None, initializer=initializer):
        m = PTBModel(is_training=True, config=config, input_=train_input)
      tf.summary.scalar("Training Loss", m.cost)
      tf.summary.scalar("Learning Rate", m.lr)

    with tf.name_scope("Valid"):
      valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
      with tf.variable_scope("Model", reuse=True, initializer=initializer):
        mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
      tf.summary.scalar("Validation Loss", mvalid.cost)

    with tf.name_scope("Test"):
      test_input = PTBInput(config=eval_config, data=test_data, name="TestInput")
      with tf.variable_scope("Model", reuse=True, initializer=initializer):
        mtest = PTBModel(is_training=False, config=eval_config,
                         input_=test_input)

    sv = tf.train.Supervisor(logdir=FLAGS.save_path)
    with sv.managed_session() as session:
      for i in range(config.max_max_epoch):
        lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)
        m.assign_lr(session, config.learning_rate * lr_decay)

        print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
        train_perplexity = run_epoch(session, m, eval_op=m.train_op,
                                     verbose=True)
        print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
        valid_perplexity = run_epoch(session, mvalid)
        print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))

      test_perplexity = run_epoch(session, mtest)
      print("Test Perplexity: %.3f" % test_perplexity)

      if FLAGS.save_path:
        print("Saving model to %s." % FLAGS.save_path)
        sv.saver.save(session, FLAGS.save_path, global_step=sv.global_step) 
Example #16
Source File: train.py    From bit-rnn with Apache License 2.0 4 votes vote down vote up
def main(_):
    if not FLAGS.data_path:
        raise ValueError("Must set --data_path to PTB data directory")

    raw_data = reader.ptb_raw_data(FLAGS.data_path)
    train_data, valid_data, test_data, _ = raw_data

    config = get_config()
    eval_config = get_config()
    eval_config.batch_size = 1
    eval_config.num_steps = 1

    with tf.Graph().as_default(), tf.Session() as session:
        initializer = tf.initializers.variance_scaling(distribution='uniform')
        with tf.variable_scope("model", reuse=tf.AUTO_REUSE, initializer=initializer):
            m = PTBModel(is_training=True, config=config)
        with tf.variable_scope("model", reuse=True, initializer=initializer):
            mvalid = PTBModel(is_training=False, config=config)
            mtest = PTBModel(is_training=False, config=eval_config)

        tf.global_variables_initializer().run()

        def get_learning_rate(epoch, config):
            base_lr = config.learning_rate
            if epoch <= config.nr_epoch_first_stage:
                return base_lr
            elif epoch <= config.nr_epoch_second_stage:
                return base_lr * 0.1
            else:
                return base_lr * 0.01

        for i in range(config.max_epoch):
            m.assign_lr(session, get_learning_rate(i, config))

            print("Epoch: %d Learning rate: %f"
                  % (i + 1, session.run(m.lr)))
            train_perplexity = run_epoch(
                session, m, train_data, m.train_op, verbose=True)
            print("Epoch: %d Train Perplexity: %.3f"
                  % (i + 1, train_perplexity))
            valid_perplexity = run_epoch(
                session, mvalid, valid_data, tf.no_op())
            print("Epoch: %d Valid Perplexity: %.3f"
                  % (i + 1, valid_perplexity))

        test_perplexity = run_epoch(
            session, mtest, test_data, tf.no_op())
        print("Test Perplexity: %.3f" % test_perplexity) 
Example #17
Source File: lstm.py    From dlbench with MIT License 4 votes vote down vote up
def main(_):
  if not FLAGS.data_path:
    raise ValueError("Must set --data_path to PTB data directory")

  raw_data = reader.ptb_raw_data(FLAGS.data_path)
  train_data, valid_data, test_data, _ = raw_data

  config = get_config()
  eval_config = get_config()
  eval_config.batch_size = 1
  eval_config.num_steps = 1

  if config.device == '-1':
    tf_dev = '/cpu:0'
  else:
    tf_dev = '/gpu:' + config.device

  print(tf_dev)
  tconfig = tf.ConfigProto(allow_soft_placement=True)
  if tf_dev.find('cpu') >= 0: # cpu version
    num_threads = os.getenv('OMP_NUM_THREADS', 1)
    tconfig = tf.ConfigProto(allow_soft_placement=True, intra_op_parallelism_threads=int(num_threads))
  with tf.Graph().as_default(), tf.device(tf_dev), tf.Session(config=tconfig) as session:
    initializer = tf.random_uniform_initializer(-config.init_scale,
                                                config.init_scale)
    with tf.variable_scope("model", reuse=None, initializer=initializer):
      m = PTBModel(is_training=True, config=config)
    # with tf.variable_scope("model", reuse=True, initializer=initializer):
    #   mvalid = PTBModel(is_training=False, config=config)
    #   mtest = PTBModel(is_training=False, config=eval_config)

    tf.initialize_all_variables().run()

    for i in range(config.max_max_epoch):
      lr_decay = config.lr_decay ** max(i - config.max_epoch, 0.0)
      m.assign_lr(session, config.learning_rate * lr_decay)

      print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
      train_perplexity = run_epoch(session, m, train_data, m.train_op, config.iters, 
                                   verbose=True)
#      print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
#      valid_perplexity = run_epoch(session, mvalid, valid_data, tf.no_op())
#      print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))

#    test_perplexity = run_epoch(session, mtest, test_data, tf.no_op())
#    print("Test Perplexity: %.3f" % test_perplexity) 
Example #18
Source File: lstm.py    From dlbench with MIT License 4 votes vote down vote up
def main(_):
  if not FLAGS.data_path:
    raise ValueError("Must set --data_path to PTB data directory")

  raw_data = reader.ptb_raw_data(FLAGS.data_path)
  train_data, valid_data, test_data, _ = raw_data

  config = get_config()
  eval_config = get_config()
  eval_config.batch_size = 1
  eval_config.num_steps = 1

  if config.device == '-1':
    tf_dev = '/cpu:0'
  else:
    tf_dev = '/gpu:' + config.device

  print(tf_dev)
  tconfig = tf.ConfigProto(allow_soft_placement=True)
  if tf_dev.find('cpu') >= 0: # cpu version
    num_threads = os.getenv('OMP_NUM_THREADS', 1)
    tconfig = tf.ConfigProto(allow_soft_placement=True, intra_op_parallelism_threads=int(num_threads))
  with tf.Graph().as_default(), tf.device(tf_dev), tf.Session(config=tconfig) as session:
    initializer = tf.random_uniform_initializer(-config.init_scale,
                                                config.init_scale)
    with tf.variable_scope("model", reuse=None, initializer=initializer):
      m = PTBModel(is_training=True, config=config)
    with tf.variable_scope("model", reuse=True, initializer=initializer):
       #mvalid = PTBModel(is_training=False, config=config)
       mtest = PTBModel(is_training=False, config=eval_config)

    tf.global_variables_initializer().run()

    total_average_batch_time = 0.0

    epochs_info = []
    for i in range(config.max_max_epoch):
      #lr_decay = config.lr_decay ** max(i - config.max_epoch, 0.0)
      #m.assign_lr(session, config.learning_rate * lr_decay)
      m.assign_lr(session, config.learning_rate)

      print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
      train_perplexity, average_batch_time = run_epoch(session, m, train_data, m.train_op, verbose=True)
      total_average_batch_time += average_batch_time
      print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
      if i % 2 == 0:
         epochs_info.append('%d:_:%.3f'%(i, train_perplexity)) 
#      valid_perplexity = run_epoch(session, mvalid, valid_data, tf.no_op())
#      print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))

    print("average_batch_time: %.6f" % (total_average_batch_time/int(config.max_max_epoch)))
    print('epoch_info:'+','.join(epochs_info))

    test_perplexity, test_average_batch_time = run_epoch(session, mtest, test_data, tf.no_op())
    print("Test Perplexity: %.3f" % test_perplexity) 
Example #19
Source File: ptb_word_lm.py    From HumanRecognition with MIT License 4 votes vote down vote up
def main(_):
  if not FLAGS.data_path:
    raise ValueError("Must set --data_path to PTB data directory")

  raw_data = reader.ptb_raw_data(FLAGS.data_path)
  train_data, valid_data, test_data, _ = raw_data

  config = get_config()
  eval_config = get_config()
  eval_config.batch_size = 1
  eval_config.num_steps = 1

  with tf.Graph().as_default():
    initializer = tf.random_uniform_initializer(-config.init_scale,
                                                config.init_scale)

    with tf.name_scope("Train"):
      train_input = PTBInput(config=config, data=train_data, name="TrainInput")
      with tf.variable_scope("Model", reuse=None, initializer=initializer):
        m = PTBModel(is_training=True, config=config, input_=train_input)
      tf.summary.scalar("Training Loss", m.cost)
      tf.summary.scalar("Learning Rate", m.lr)

    with tf.name_scope("Valid"):
      valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
      with tf.variable_scope("Model", reuse=True, initializer=initializer):
        mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
      tf.summary.scalar("Validation Loss", mvalid.cost)

    with tf.name_scope("Test"):
      test_input = PTBInput(config=eval_config, data=test_data, name="TestInput")
      with tf.variable_scope("Model", reuse=True, initializer=initializer):
        mtest = PTBModel(is_training=False, config=eval_config,
                         input_=test_input)

    sv = tf.train.Supervisor(logdir=FLAGS.save_path)
    with sv.managed_session() as session:
      for i in range(config.max_max_epoch):
        lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)
        m.assign_lr(session, config.learning_rate * lr_decay)

        print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
        train_perplexity = run_epoch(session, m, eval_op=m.train_op,
                                     verbose=True)
        print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
        valid_perplexity = run_epoch(session, mvalid)
        print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))

      test_perplexity = run_epoch(session, mtest)
      print("Test Perplexity: %.3f" % test_perplexity)

      if FLAGS.save_path:
        print("Saving model to %s." % FLAGS.save_path)
        sv.saver.save(session, FLAGS.save_path, global_step=sv.global_step) 
Example #20
Source File: ptb_word_lm.py    From YellowFin with Apache License 2.0 4 votes vote down vote up
def main(_):
  if not FLAGS.data_path:
    raise ValueError("Must set --data_path to PTB data directory")

  raw_data = reader.ptb_raw_data(FLAGS.data_path)
  train_data, valid_data, test_data, _ = raw_data

  config = get_config()
  eval_config = get_config()
  eval_config.batch_size = 1
  eval_config.num_steps = 1

  with tf.Graph().as_default():
    initializer = tf.random_uniform_initializer(-config.init_scale,
                                                config.init_scale)

    with tf.name_scope("Train"):
      train_input = PTBInput(config=config, data=train_data, name="TrainInput")
      with tf.variable_scope("Model", reuse=None, initializer=initializer):
        m = PTBModel(is_training=True, config=config, input_=train_input)
      tf.scalar_summary("Training Loss", m.cost)
      tf.scalar_summary("Learning Rate", m.lr)

    with tf.name_scope("Valid"):
      valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
      with tf.variable_scope("Model", reuse=True, initializer=initializer):
        mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
      tf.scalar_summary("Validation Loss", mvalid.cost)

    with tf.name_scope("Test"):
      test_input = PTBInput(config=eval_config, data=test_data, name="TestInput")
      with tf.variable_scope("Model", reuse=True, initializer=initializer):
        mtest = PTBModel(is_training=False, config=eval_config,
                         input_=test_input)

    sv = tf.train.Supervisor(logdir=FLAGS.save_path)
    with sv.managed_session() as session:
    # session = sv.managed_session()
    # with tf.Session() as session:
      for i in range(config.max_max_epoch):
        lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)
        m.assign_lr(session, config.learning_rate * lr_decay)

        print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
        train_perplexity = run_epoch(session, m, eval_op=m.train_op,
                                     verbose=True)
        print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
        valid_perplexity = run_epoch(session, mvalid)
        print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))

      test_perplexity = run_epoch(session, mtest)
      print("Test Perplexity: %.3f" % test_perplexity)

      if FLAGS.save_path:
        print("Saving model to %s." % FLAGS.save_path)
        sv.saver.save(session, FLAGS.save_path, global_step=sv.global_step)