Python blocks.model.Model() Examples
The following are 9
code examples of blocks.model.Model().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
blocks.model
, or try the search function
.
Example #1
Source File: test_model.py From attention-lvcsr with MIT License | 5 votes |
def test_model_handles_brickless_parameteres(): x = tensor.matrix('x') v = shared_floatx(numpy.zeros((10, 10)), name='V') add_role(v, PARAMETER) y = x.dot(v) model = Model(y) assert list(model.get_parameter_dict().items()) == [('V', v)]
Example #2
Source File: test_machine_translation.py From blocks-examples with MIT License | 5 votes |
def test_sampling(): # Create Theano variables sampling_input = theano.tensor.lmatrix('input') # Construct model encoder = BidirectionalEncoder( vocab_size=10, embedding_dim=5, state_dim=8) decoder = Decoder( vocab_size=12, embedding_dim=6, state_dim=8, representation_dim=16, theano_seed=1234) sampling_representation = encoder.apply( sampling_input, theano.tensor.ones(sampling_input.shape)) generateds = decoder.generate(sampling_input, sampling_representation) model = Model(generateds[1]) # Initialize model encoder.weights_init = decoder.weights_init = IsotropicGaussian( 0.01) encoder.biases_init = decoder.biases_init = Constant(0) encoder.push_initialization_config() decoder.push_initialization_config() encoder.bidir.prototype.weights_init = Orthogonal() decoder.transition.weights_init = Orthogonal() encoder.initialize() decoder.initialize() # Compile a function for the generated sampling_fn = model.get_theano_function() # Create literal variables numpy.random.seed(1234) x = numpy.random.randint(0, 10, size=(1, 2)) # Call function and check result generated_step = sampling_fn(x) assert len(generated_step[0].flatten()) == 4
Example #3
Source File: __init__.py From blocks-examples with MIT License | 5 votes |
def main(save_to, num_batches): mlp = MLP([Tanh(), Identity()], [1, 10, 1], weights_init=IsotropicGaussian(0.01), biases_init=Constant(0), seed=1) mlp.initialize() x = tensor.vector('numbers') y = tensor.vector('roots') cost = SquaredError().apply(y[:, None], mlp.apply(x[:, None])) cost.name = "cost" main_loop = MainLoop( GradientDescent( cost=cost, parameters=ComputationGraph(cost).parameters, step_rule=Scale(learning_rate=0.001)), get_data_stream(range(100)), model=Model(cost), extensions=[ Timing(), FinishAfter(after_n_batches=num_batches), DataStreamMonitoring( [cost], get_data_stream(range(100, 200)), prefix="test"), TrainingDataMonitoring([cost], after_epoch=True), Checkpoint(save_to), Printing()]) main_loop.run() return main_loop
Example #4
Source File: test_saveload.py From attention-lvcsr with MIT License | 4 votes |
def test_checkpointing(): # Create a main loop and checkpoint it mlp = MLP(activations=[None], dims=[10, 10], weights_init=Constant(1.), use_bias=False) mlp.initialize() W = mlp.linear_transformations[0].W x = tensor.vector('data') cost = mlp.apply(x).mean() data = numpy.random.rand(10, 10).astype(theano.config.floatX) data_stream = IterableDataset(data).get_example_stream() main_loop = MainLoop( data_stream=data_stream, algorithm=GradientDescent(cost=cost, parameters=[W]), extensions=[FinishAfter(after_n_batches=5), Checkpoint('myweirdmodel.tar', parameters=[W])] ) main_loop.run() # Load it again old_value = W.get_value() W.set_value(old_value * 2) main_loop = MainLoop( model=Model(cost), data_stream=data_stream, algorithm=GradientDescent(cost=cost, parameters=[W]), extensions=[Load('myweirdmodel.tar')] ) main_loop.extensions[0].main_loop = main_loop main_loop._run_extensions('before_training') assert_allclose(W.get_value(), old_value) # Make sure things work too if the model was never saved before main_loop = MainLoop( model=Model(cost), data_stream=data_stream, algorithm=GradientDescent(cost=cost, parameters=[W]), extensions=[Load('mynonexisting.tar')] ) main_loop.extensions[0].main_loop = main_loop main_loop._run_extensions('before_training') # Cleaning if os.path.exists('myweirdmodel.tar'): os.remove('myweirdmodel.tar')
Example #5
Source File: test_model.py From attention-lvcsr with MIT License | 4 votes |
def test_model(): x = tensor.matrix('x') mlp1 = MLP([Tanh(), Tanh()], [10, 20, 30], name="mlp1") mlp2 = MLP([Tanh()], [30, 40], name="mlp2") h1 = mlp1.apply(x) h2 = mlp2.apply(h1) model = Model(h2) assert model.get_top_bricks() == [mlp1, mlp2] # The order of parameters returned is deterministic but # not sensible. assert list(model.get_parameter_dict().items()) == [ ('/mlp2/linear_0.b', mlp2.linear_transformations[0].b), ('/mlp1/linear_1.b', mlp1.linear_transformations[1].b), ('/mlp1/linear_0.b', mlp1.linear_transformations[0].b), ('/mlp1/linear_0.W', mlp1.linear_transformations[0].W), ('/mlp1/linear_1.W', mlp1.linear_transformations[1].W), ('/mlp2/linear_0.W', mlp2.linear_transformations[0].W)] # Test getting and setting parameter values mlp3 = MLP([Tanh()], [10, 10]) mlp3.allocate() model3 = Model(mlp3.apply(x)) parameter_values = { '/mlp/linear_0.W': 2 * numpy.ones((10, 10), dtype=theano.config.floatX), '/mlp/linear_0.b': 3 * numpy.ones(10, dtype=theano.config.floatX)} model3.set_parameter_values(parameter_values) assert numpy.all( mlp3.linear_transformations[0].parameters[0].get_value() == 2) assert numpy.all( mlp3.linear_transformations[0].parameters[1].get_value() == 3) got_parameter_values = model3.get_parameter_values() assert len(got_parameter_values) == len(parameter_values) for name, value in parameter_values.items(): assert_allclose(value, got_parameter_values[name]) # Test exception is raised if parameter shapes don't match def helper(): parameter_values = { '/mlp/linear_0.W': 2 * numpy.ones((11, 11), dtype=theano.config.floatX), '/mlp/linear_0.b': 3 * numpy.ones(11, dtype=theano.config.floatX)} model3.set_parameter_values(parameter_values) assert_raises(ValueError, helper) # Test name conflict handling mlp4 = MLP([Tanh()], [10, 10]) def helper(): Model(mlp4.apply(mlp3.apply(x))) assert_raises(ValueError, helper)
Example #6
Source File: __init__.py From blocks-examples with MIT License | 4 votes |
def main(save_to, num_epochs): mlp = MLP([Tanh(), Softmax()], [784, 100, 10], weights_init=IsotropicGaussian(0.01), biases_init=Constant(0)) mlp.initialize() x = tensor.matrix('features') y = tensor.lmatrix('targets') probs = mlp.apply(x) cost = CategoricalCrossEntropy().apply(y.flatten(), probs) error_rate = MisclassificationRate().apply(y.flatten(), probs) cg = ComputationGraph([cost]) W1, W2 = VariableFilter(roles=[WEIGHT])(cg.variables) cost = cost + .00005 * (W1 ** 2).sum() + .00005 * (W2 ** 2).sum() cost.name = 'final_cost' mnist_train = MNIST(("train",)) mnist_test = MNIST(("test",)) algorithm = GradientDescent( cost=cost, parameters=cg.parameters, step_rule=Scale(learning_rate=0.1)) extensions = [Timing(), FinishAfter(after_n_epochs=num_epochs), DataStreamMonitoring( [cost, error_rate], Flatten( DataStream.default_stream( mnist_test, iteration_scheme=SequentialScheme( mnist_test.num_examples, 500)), which_sources=('features',)), prefix="test"), TrainingDataMonitoring( [cost, error_rate, aggregation.mean(algorithm.total_gradient_norm)], prefix="train", after_epoch=True), Checkpoint(save_to), Printing()] if BLOCKS_EXTRAS_AVAILABLE: extensions.append(Plot( 'MNIST example', channels=[ ['test_final_cost', 'test_misclassificationrate_apply_error_rate'], ['train_total_gradient_norm']])) main_loop = MainLoop( algorithm, Flatten( DataStream.default_stream( mnist_train, iteration_scheme=SequentialScheme( mnist_train.num_examples, 50)), which_sources=('features',)), model=Model(cost), extensions=extensions) main_loop.run()
Example #7
Source File: train_celeba_vae.py From discgen with MIT License | 4 votes |
def run(discriminative_regularization=True): streams = create_celeba_streams(training_batch_size=100, monitoring_batch_size=500, include_targets=False) main_loop_stream, train_monitor_stream, valid_monitor_stream = streams[:3] # Compute parameter updates for the batch normalization population # statistics. They are updated following an exponential moving average. rval = create_training_computation_graphs(discriminative_regularization) cg, bn_cg, variance_parameters = rval pop_updates = list( set(get_batch_normalization_updates(bn_cg, allow_duplicates=True))) decay_rate = 0.05 extra_updates = [(p, m * decay_rate + p * (1 - decay_rate)) for p, m in pop_updates] model = Model(bn_cg.outputs[0]) selector = Selector( find_bricks( model.top_bricks, lambda brick: brick.name in ('encoder_convnet', 'encoder_mlp', 'decoder_convnet', 'decoder_mlp'))) parameters = list(selector.get_parameters().values()) + variance_parameters # Prepare algorithm step_rule = Adam() algorithm = GradientDescent(cost=bn_cg.outputs[0], parameters=parameters, step_rule=step_rule) algorithm.add_updates(extra_updates) # Prepare monitoring monitored_quantities_list = [] for graph in [bn_cg, cg]: cost, kl_term, reconstruction_term = graph.outputs cost.name = 'nll_upper_bound' avg_kl_term = kl_term.mean(axis=0) avg_kl_term.name = 'avg_kl_term' avg_reconstruction_term = -reconstruction_term.mean(axis=0) avg_reconstruction_term.name = 'avg_reconstruction_term' monitored_quantities_list.append( [cost, avg_kl_term, avg_reconstruction_term]) train_monitoring = DataStreamMonitoring( monitored_quantities_list[0], train_monitor_stream, prefix="train", updates=extra_updates, after_epoch=False, before_first_epoch=False, every_n_epochs=5) valid_monitoring = DataStreamMonitoring( monitored_quantities_list[1], valid_monitor_stream, prefix="valid", after_epoch=False, before_first_epoch=False, every_n_epochs=5) # Prepare checkpoint save_path = 'celeba_vae_{}regularization.zip'.format( '' if discriminative_regularization else 'no_') checkpoint = Checkpoint(save_path, every_n_epochs=5, use_cpickle=True) extensions = [Timing(), FinishAfter(after_n_epochs=75), train_monitoring, valid_monitoring, checkpoint, Printing(), ProgressBar()] main_loop = MainLoop(data_stream=main_loop_stream, algorithm=algorithm, extensions=extensions) main_loop.run()
Example #8
Source File: pacgan_task.py From PacGAN with MIT License | 4 votes |
def create_models(self): gan = self.create_model_brick() x = tensor.matrix('features') zs = [] for i in range(self._config["num_packing"]): z = circle_gaussian_mixture(num_modes=self._config["num_zmode"], num_samples=x.shape[0], dimension=self._config["num_zdim"], r=self._config["z_mode_r"], std=self._config["z_mode_std"]) zs.append(z) def _create_model(with_dropout): cg = ComputationGraph(gan.compute_losses(x, zs)) if with_dropout: inputs = VariableFilter( bricks=gan.discriminator.children[1:], roles=[INPUT])(cg.variables) cg = apply_dropout(cg, inputs, 0.5) inputs = VariableFilter( bricks=[gan.discriminator], roles=[INPUT])(cg.variables) cg = apply_dropout(cg, inputs, 0.2) return Model(cg.outputs) model = _create_model(with_dropout=False) with batch_normalization(gan): bn_model = _create_model(with_dropout=False) pop_updates = list(set(get_batch_normalization_updates(bn_model, allow_duplicates=True))) # merge same variables names = [] counts = [] pop_update_merges = [] pop_update_merges_finals = [] for pop_update in pop_updates: b = False for i in range(len(names)): if (pop_update[0].auto_name == names[i]): counts[i] += 1 pop_update_merges[i][1] += pop_update[1] b = True break if not b: names.append(pop_update[0].auto_name) counts.append(1) pop_update_merges.append([pop_update[0], pop_update[1]]) for i in range(len(pop_update_merges)): pop_update_merges_finals.append((pop_update_merges[i][0], pop_update_merges[i][1] / counts[i])) bn_updates = [(p, m * 0.05 + p * 0.95) for p, m in pop_update_merges_finals] return model, bn_model, bn_updates
Example #9
Source File: pacgan_task.py From PacGAN with MIT License | 4 votes |
def create_models(self): gan = self.create_model_brick() x = tensor.matrix('features') zs = [] for i in range(self._config["num_packing"]): z = circle_gaussian_mixture(num_modes=self._config["num_zmode"], num_samples=x.shape[0], dimension=self._config["num_zdim"], r=self._config["z_mode_r"], std=self._config["z_mode_std"]) zs.append(z) def _create_model(with_dropout): cg = ComputationGraph(gan.compute_losses(x, zs)) if with_dropout: inputs = VariableFilter( bricks=gan.discriminator.children[1:], roles=[INPUT])(cg.variables) cg = apply_dropout(cg, inputs, 0.5) inputs = VariableFilter( bricks=[gan.discriminator], roles=[INPUT])(cg.variables) cg = apply_dropout(cg, inputs, 0.2) return Model(cg.outputs) model = _create_model(with_dropout=False) with batch_normalization(gan): bn_model = _create_model(with_dropout=False) pop_updates = list(set(get_batch_normalization_updates(bn_model, allow_duplicates=True))) # merge same variables names = [] counts = [] pop_update_merges = [] pop_update_merges_finals = [] for pop_update in pop_updates: b = False for i in range(len(names)): if (pop_update[0].auto_name == names[i]): counts[i] += 1 pop_update_merges[i][1] += pop_update[1] b = True break if not b: names.append(pop_update[0].auto_name) counts.append(1) pop_update_merges.append([pop_update[0], pop_update[1]]) for i in range(len(pop_update_merges)): pop_update_merges_finals.append((pop_update_merges[i][0], pop_update_merges[i][1] / counts[i])) bn_updates = [(p, m * 0.05 + p * 0.95) for p, m in pop_update_merges_finals] return model, bn_model, bn_updates