Python keras.layers.advanced_activations.LeakyReLU() Examples

The following are 30 code examples of keras.layers.advanced_activations.LeakyReLU(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module keras.layers.advanced_activations , or try the search function .
Example #1
Source File: model.py    From Pix2Pix-Keras with MIT License 7 votes vote down vote up
def creat_discriminator(self):
        # layer 0
        image_A = Input(shape=self.image_shape)
        image_B = Input(shape=self.image_shape)
        combined_images = Concatenate(axis=-1)([image_A, image_B])
        # layer 1
        d1 = Conv2D(filters=64, kernel_size=4, strides=2, padding='same')(combined_images)
        d1 = LeakyReLU(alpha=0.2)(d1)
        # layer 2
        d2 = Conv2D(filters=128, kernel_size=4, strides=2, padding='same')(d1)
        d2 = LeakyReLU(alpha=0.2)(d2)
        d2 = BatchNormalization(momentum=0.8)(d2)
        # layer 3
        d3 = Conv2D(filters=128, kernel_size=4, strides=2, padding='same')(d2)
        d3 = LeakyReLU(alpha=0.2)(d3)
        d3 = BatchNormalization(momentum=0.8)(d3)
        # layer 4
        d4 = Conv2D(filters=128, kernel_size=4, strides=2, padding='same')(d3)
        d4 = LeakyReLU(alpha=0.2)(d4)
        d4 = BatchNormalization(momentum=0.8)(d4)
        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)
        return Model([image_A, image_B], validity) 
Example #2
Source File: context_encoder.py    From Keras-GAN with MIT License 7 votes vote down vote up
def build_discriminator(self):

        model = Sequential()

        model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.missing_shape, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(256, kernel_size=3, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Flatten())
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.missing_shape)
        validity = model(img)

        return Model(img, validity) 
Example #3
Source File: cogan.py    From Keras-GAN with MIT License 7 votes vote down vote up
def build_discriminators(self):

        img1 = Input(shape=self.img_shape)
        img2 = Input(shape=self.img_shape)

        # Shared discriminator layers
        model = Sequential()
        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(256))
        model.add(LeakyReLU(alpha=0.2))

        img1_embedding = model(img1)
        img2_embedding = model(img2)

        # Discriminator 1
        validity1 = Dense(1, activation='sigmoid')(img1_embedding)
        # Discriminator 2
        validity2 = Dense(1, activation='sigmoid')(img2_embedding)

        return Model(img1, validity1), Model(img2, validity2) 
Example #4
Source File: discogan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_discriminator(self):

        def d_layer(layer_input, filters, f_size=4, normalization=True):
            """Discriminator layer"""
            d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
            d = LeakyReLU(alpha=0.2)(d)
            if normalization:
                d = InstanceNormalization()(d)
            return d

        img = Input(shape=self.img_shape)

        d1 = d_layer(img, self.df, normalization=False)
        d2 = d_layer(d1, self.df*2)
        d3 = d_layer(d2, self.df*4)
        d4 = d_layer(d3, self.df*8)

        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)

        return Model(img, validity) 
Example #5
Source File: lsgan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_generator(self):

        model = Sequential()

        model.add(Dense(256, input_dim=self.latent_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(1024))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))

        model.summary()

        noise = Input(shape=(self.latent_dim,))
        img = model(noise)

        return Model(noise, img) 
Example #6
Source File: pixelda.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_classifier(self):

        def clf_layer(layer_input, filters, f_size=4, normalization=True):
            """Classifier layer"""
            d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
            d = LeakyReLU(alpha=0.2)(d)
            if normalization:
                d = InstanceNormalization()(d)
            return d

        img = Input(shape=self.img_shape)

        c1 = clf_layer(img, self.cf, normalization=False)
        c2 = clf_layer(c1, self.cf*2)
        c3 = clf_layer(c2, self.cf*4)
        c4 = clf_layer(c3, self.cf*8)
        c5 = clf_layer(c4, self.cf*8)

        class_pred = Dense(self.num_classes, activation='softmax')(Flatten()(c5))

        return Model(img, class_pred) 
Example #7
Source File: bigan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_encoder(self):
        model = Sequential()

        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(self.latent_dim))

        model.summary()

        img = Input(shape=self.img_shape)
        z = model(img)

        return Model(img, z) 
Example #8
Source File: ccgan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_discriminator(self):

        img = Input(shape=self.img_shape)

        model = Sequential()
        model.add(Conv2D(64, kernel_size=4, strides=2, padding='same', input_shape=self.img_shape))
        model.add(LeakyReLU(alpha=0.8))
        model.add(Conv2D(128, kernel_size=4, strides=2, padding='same'))
        model.add(LeakyReLU(alpha=0.2))
        model.add(InstanceNormalization())
        model.add(Conv2D(256, kernel_size=4, strides=2, padding='same'))
        model.add(LeakyReLU(alpha=0.2))
        model.add(InstanceNormalization())

        model.summary()

        img = Input(shape=self.img_shape)
        features = model(img)

        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(features)

        label = Flatten()(features)
        label = Dense(self.num_classes+1, activation="softmax")(label)

        return Model(img, [validity, label]) 
Example #9
Source File: bigan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_discriminator(self):

        z = Input(shape=(self.latent_dim, ))
        img = Input(shape=self.img_shape)
        d_in = concatenate([z, Flatten()(img)])

        model = Dense(1024)(d_in)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        model = Dense(1024)(model)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        model = Dense(1024)(model)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        validity = Dense(1, activation="sigmoid")(model)

        return Model([z, img], validity) 
Example #10
Source File: discriminator.py    From Generative-Adversarial-Networks-Cookbook with MIT License 6 votes vote down vote up
def model(self):
        input_layer = Input(self.SHAPE)

        up_layer_1 = Convolution2D(64, kernel_size=4, strides=2, padding='same',activation=LeakyReLU(alpha=0.2))(input_layer)

        up_layer_2 = Convolution2D(64*2, kernel_size=4, strides=2, padding='same',activation=LeakyReLU(alpha=0.2))(up_layer_1)
        norm_layer_1 = InstanceNormalization()(up_layer_2)

        up_layer_3 = Convolution2D(64*4, kernel_size=4, strides=2, padding='same',activation=LeakyReLU(alpha=0.2))(norm_layer_1)
        norm_layer_2 = InstanceNormalization()(up_layer_3)

        up_layer_4 = Convolution2D(64*8, kernel_size=4, strides=2, padding='same',activation=LeakyReLU(alpha=0.2))(norm_layer_2)
        norm_layer_3 =InstanceNormalization()(up_layer_4)

        output_layer = Convolution2D(1, kernel_size=4, strides=1, padding='same')(norm_layer_3)
        output_layer_1 = Flatten()(output_layer)
        output_layer_2 = Dense(1, activation='sigmoid')(output_layer_1)
        
        return Model(input_layer,output_layer_2) 
Example #11
Source File: test_keras2_numeric.py    From coremltools with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def test_tiny_conv_leaky_relu_random(self):
        np.random.seed(1988)

        # Define a model
        from keras.layers.advanced_activations import LeakyReLU

        model = Sequential()
        model.add(
            Conv2D(
                input_shape=(10, 10, 3), filters=3, kernel_size=(5, 5), padding="same"
            )
        )
        model.add(LeakyReLU(alpha=0.3))

        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])

        # Get the coreml model
        self._test_model(model) 
Example #12
Source File: pixelda.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_discriminator(self):

        def d_layer(layer_input, filters, f_size=4, normalization=True):
            """Discriminator layer"""
            d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
            d = LeakyReLU(alpha=0.2)(d)
            if normalization:
                d = InstanceNormalization()(d)
            return d

        img = Input(shape=self.img_shape)

        d1 = d_layer(img, self.df, normalization=False)
        d2 = d_layer(d1, self.df*2)
        d3 = d_layer(d2, self.df*4)
        d4 = d_layer(d3, self.df*8)

        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)

        return Model(img, validity) 
Example #13
Source File: test_keras_numeric.py    From coremltools with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def test_tiny_conv_leaky_relu_random(self):
        np.random.seed(1988)

        # Define a model
        from keras.layers.advanced_activations import LeakyReLU

        model = Sequential()
        model.add(
            Convolution2D(
                input_shape=(10, 10, 3),
                nb_filter=3,
                nb_row=5,
                nb_col=5,
                border_mode="same",
            )
        )
        model.add(LeakyReLU(alpha=0.3))

        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])

        # Get the coreml model
        self._test_keras_model(model) 
Example #14
Source File: trainer.py    From CT-GAN with MIT License 6 votes vote down vote up
def build_discriminator(self):

        def d_layer(layer_input, filters, f_size=4, bn=True):
            """Discriminator layer"""
            d = Conv3D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
            d = LeakyReLU(alpha=0.2)(d)
            if bn:
                d = BatchNormalization(momentum=0.8)(d)
            return d

        img_A = Input(shape=self.img_shape)
        img_B = Input(shape=self.img_shape)

        # Concatenate image and conditioning image by channels to produce input
        model_input = Concatenate(axis=-1)([img_A, img_B])

        d1 = d_layer(model_input, self.df, bn=False)
        d2 = d_layer(d1, self.df * 2)
        d3 = d_layer(d2, self.df * 4)
        d4 = d_layer(d3, self.df * 8)

        validity = Conv3D(1, kernel_size=4, strides=1, padding='same')(d4)

        return Model([img_A, img_B], validity) 
Example #15
Source File: dcgan_mnist.py    From keras-examples with MIT License 6 votes vote down vote up
def discriminator_model():
    model = Sequential()
    # Poolingの代わりにsubsample使う(出力のサイズ半分)
    model.add(Convolution2D(64, 5, 5,
              subsample=(2, 2),
              border_mode='same',
              input_shape=(28, 28, 1)))  # tfモードはチャネルは後!
    model.add(LeakyReLU(0.2))
    model.add(Convolution2D(128, 5, 5, subsample=(2, 2)))
    model.add(LeakyReLU(0.2))
    model.add(Flatten())
    model.add(Dense(256))
    model.add(LeakyReLU(0.2))
    model.add(Dropout(0.5))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))
    return model 
Example #16
Source File: cyclegan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_discriminator(self):

        def d_layer(layer_input, filters, f_size=4, normalization=True):
            """Discriminator layer"""
            d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
            d = LeakyReLU(alpha=0.2)(d)
            if normalization:
                d = InstanceNormalization()(d)
            return d

        img = Input(shape=self.img_shape)

        d1 = d_layer(img, self.df, normalization=False)
        d2 = d_layer(d1, self.df*2)
        d3 = d_layer(d2, self.df*4)
        d4 = d_layer(d3, self.df*8)

        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)

        return Model(img, validity) 
Example #17
Source File: pix2pix.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_discriminator(self):

        def d_layer(layer_input, filters, f_size=4, bn=True):
            """Discriminator layer"""
            d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
            d = LeakyReLU(alpha=0.2)(d)
            if bn:
                d = BatchNormalization(momentum=0.8)(d)
            return d

        img_A = Input(shape=self.img_shape)
        img_B = Input(shape=self.img_shape)

        # Concatenate image and conditioning image by channels to produce input
        combined_imgs = Concatenate(axis=-1)([img_A, img_B])

        d1 = d_layer(combined_imgs, self.df, bn=False)
        d2 = d_layer(d1, self.df*2)
        d3 = d_layer(d2, self.df*4)
        d4 = d_layer(d3, self.df*8)

        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(d4)

        return Model([img_A, img_B], validity) 
Example #18
Source File: dualgan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_generator(self):

        X = Input(shape=(self.img_dim,))

        model = Sequential()
        model.add(Dense(256, input_dim=self.img_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dropout(0.4))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dropout(0.4))
        model.add(Dense(1024))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dropout(0.4))
        model.add(Dense(self.img_dim, activation='tanh'))

        X_translated = model(X)

        return Model(X, X_translated) 
Example #19
Source File: Build_Model.py    From DOVE with GNU General Public License v3.0 6 votes vote down vote up
def makecnn(learningrate,regular,decay,channel_number):
    #model structure
    model=Sequential()
    model.add(Conv3D(100, kernel_size=(3,3,3), strides=(1, 1, 1), input_shape = (20,20,20,channel_number),padding='valid', data_format='channels_last', dilation_rate=(1, 1, 1),  use_bias=True, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))
    model.add(BatchNormalization())
    model.add(LeakyReLU(0.2))
    #model.add(Dropout(0.3))

    model.add(Conv3D(200, kernel_size=(3,3,3), strides=(1, 1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1, 1), use_bias=True, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))
    model.add(BatchNormalization())
    model.add(LeakyReLU(0.2))
    #model.add(Dropout(0.3))

    model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=None, padding='valid', data_format='channels_last'))
    model.add(BatchNormalization(axis=1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer='zeros', gamma_initializer='ones', moving_mean_initializer='zeros', moving_variance_initializer='ones', beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None))
    model.add(Conv3D(400, kernel_size=(3,3,3),strides=(1, 1, 1), padding='valid', data_format='channels_last', dilation_rate=(1, 1, 1), use_bias=True, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))
    model.add(BatchNormalization())
    model.add(LeakyReLU(0.2))
    #model.add(Dropout(0.3))

    model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=None, padding='valid', data_format='channels_last'))
    model.add(Flatten())
    model.add(Dropout(0.3))
    model.add(Dense(1000, use_bias=True, input_shape = (32000,),kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))
    model.add(BatchNormalization())
    model.add(LeakyReLU(0.2))
    model.add(Dropout(0.3))

    model.add(Dense(100, use_bias=True, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))
    model.add(BatchNormalization())
    model.add(LeakyReLU(0.2))
    model.add(Dropout(0.3))

    model.add(Dense(1, activation='sigmoid', use_bias=True, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=l2(regular), kernel_constraint=None, bias_constraint=None))
    nadam=Nadam(lr=learningrate, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=decay)
    model.compile(loss='binary_crossentropy', optimizer=nadam, metrics=['accuracy',f1score,precision,recall])
    return model 
Example #20
Source File: gan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_generator(self):

        model = Sequential()

        model.add(Dense(256, input_dim=self.latent_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(1024))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))

        model.summary()

        noise = Input(shape=(self.latent_dim,))
        img = model(noise)

        return Model(noise, img) 
Example #21
Source File: gan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_discriminator(self):

        model = Sequential()

        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(256))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.img_shape)
        validity = model(img)

        return Model(img, validity) 
Example #22
Source File: aae.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_encoder(self):
        # Encoder

        img = Input(shape=self.img_shape)

        h = Flatten()(img)
        h = Dense(512)(h)
        h = LeakyReLU(alpha=0.2)(h)
        h = Dense(512)(h)
        h = LeakyReLU(alpha=0.2)(h)
        mu = Dense(self.latent_dim)(h)
        log_var = Dense(self.latent_dim)(h)
        latent_repr = merge([mu, log_var],
                mode=lambda p: p[0] + K.random_normal(K.shape(p[0])) * K.exp(p[1] / 2),
                output_shape=lambda p: p[0])

        return Model(img, latent_repr) 
Example #23
Source File: aae.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_decoder(self):

        model = Sequential()

        model.add(Dense(512, input_dim=self.latent_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(np.prod(self.img_shape), activation='tanh'))
        model.add(Reshape(self.img_shape))

        model.summary()

        z = Input(shape=(self.latent_dim,))
        img = model(z)

        return Model(z, img) 
Example #24
Source File: resnext.py    From CBAM-keras with MIT License 6 votes vote down vote up
def __initial_conv_block_inception(input, weight_decay=5e-4):
    ''' Adds an initial conv block, with batch norm and relu for the inception resnext
    Args:
        input: input tensor
        weight_decay: weight decay factor
    Returns: a keras tensor
    '''
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = Conv2D(64, (7, 7), padding='same', use_bias=False, kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay), strides=(2, 2))(input)
    x = BatchNormalization(axis=channel_axis)(x)
    x = LeakyReLU()(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

    return x 
Example #25
Source File: bgan.py    From Keras-GAN with MIT License 6 votes vote down vote up
def build_discriminator(self):

        model = Sequential()

        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(256))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.img_shape)
        validity = model(img)

        return Model(img, validity) 
Example #26
Source File: model_zoo.py    From visual_turing_test-tutorial with MIT License 6 votes vote down vote up
def deep_mlp(self):
        """
        Deep Multilayer Perceptrop.
        """
        if self._config.num_mlp_layers == 0:
            self.add(Dropout(0.5))
        else:
            for j in xrange(self._config.num_mlp_layers):
                self.add(Dense(self._config.mlp_hidden_dim))
                if self._config.mlp_activation == 'elu':
                    self.add(ELU())
                elif self._config.mlp_activation == 'leaky_relu':
                    self.add(LeakyReLU())
                elif self._config.mlp_activation == 'prelu':
                    self.add(PReLU())
                else:
                    self.add(Activation(self._config.mlp_activation))
                self.add(Dropout(0.5)) 
Example #27
Source File: ae_model.py    From Pix2Pose with MIT License 6 votes vote down vote up
def DCGAN_discriminator():
    nb_filters = 64
    nb_conv = int(np.floor(np.log(128) / np.log(2)))
    list_filters = [nb_filters * min(8, (2 ** i)) for i in range(nb_conv)]

    input_img = Input(shape=(128, 128, 3))
    x = Conv2D(list_filters[0], (3, 3), strides=(2, 2), name="disc_conv2d_1", padding="same")(input_img)
    x = BatchNormalization(axis=-1)(x)
    x = LeakyReLU(0.2)(x)
    # Next convs
    for i, f in enumerate(list_filters[1:]):
        name = "disc_conv2d_%s" % (i + 2)
        x = Conv2D(f, (3, 3), strides=(2, 2), name=name, padding="same")(x)
        x = BatchNormalization(axis=-1)(x)
        x = LeakyReLU(0.2)(x)

    x_flat = Flatten()(x)
    x_out = Dense(1, activation="sigmoid", name="disc_dense")(x_flat)
    discriminator_model = Model(inputs=input_img, outputs=[x_out])
    return discriminator_model 
Example #28
Source File: captcha_gan.py    From Intelligent-Projects-Using-Python with MIT License 6 votes vote down vote up
def discriminator(img_dim,alpha=0.2):
    model = Sequential()
    model.add(
            Conv2D(64, kernel_size=5,strides=2,
            padding='same',
            input_shape=img_dim)
            )
    model.add(LeakyReLU(alpha))
    model.add(Conv2D(128,kernel_size=5,strides=2,padding='same'))
    model.add(BatchNormalization())
    model.add(LeakyReLU(alpha))
    model.add(Conv2D(256,kernel_size=5,strides=2,padding='same'))
    model.add(BatchNormalization())
    model.add(LeakyReLU(alpha))
    model.add(Flatten())
    model.add(Dense(1))
    model.add(Activation('sigmoid'))
    return model

# Define a combination of Generator and Discriminator 
Example #29
Source File: co_lstm_predict_day.py    From copper_price_forecast with GNU General Public License v3.0 6 votes vote down vote up
def build_model():
    """
    定义模型
    """
    model = Sequential()

    model.add(LSTM(units=Conf.LAYERS[1], input_shape=(Conf.LAYERS[1], Conf.LAYERS[0]), return_sequences=True))
    model.add(Dropout(0.2))

    model.add(LSTM(Conf.LAYERS[2], return_sequences=False))
    model.add(Dropout(0.2))

    model.add(Dense(units=Conf.LAYERS[3]))
    # model.add(BatchNormalization(weights=None, epsilon=1e-06, momentum=0.9))
    model.add(Activation("tanh"))
    # act = PReLU(alpha_initializer='zeros', weights=None)
    # act = LeakyReLU(alpha=0.3)
    # model.add(act)

    start = time.time()
    model.compile(loss="mse", optimizer="rmsprop")
    print("> Compilation Time : ", time.time() - start)
    return model 
Example #30
Source File: co_lstm_predict_sequence.py    From copper_price_forecast with GNU General Public License v3.0 6 votes vote down vote up
def build_model():
    """
    定义模型
    """
    model = Sequential()

    model.add(LSTM(units=Conf.LAYERS[1], input_shape=(Conf.LAYERS[1], Conf.LAYERS[0]), return_sequences=True))
    model.add(Dropout(0.2))

    model.add(LSTM(Conf.LAYERS[2], return_sequences=False))
    model.add(Dropout(0.2))

    model.add(Dense(units=Conf.LAYERS[3]))
    # model.add(BatchNormalization(weights=None, epsilon=1e-06, momentum=0.9))
    model.add(Activation("tanh"))
    # act = PReLU(alpha_initializer='zeros', weights=None)
    # act = LeakyReLU(alpha=0.3)
    # model.add(act)

    start = time.time()
    model.compile(loss="mse", optimizer="rmsprop")
    print("> Compilation Time : ", time.time() - start)
    return model