Python msgpack.dump() Examples
The following are 13
code examples of msgpack.dump().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
msgpack
, or try the search function
.
Example #1
Source File: coverage.py From bncov with MIT License | 6 votes |
def save_to_file(self, filename): """Save only the bare minimum needed to reconstruct this CoverageDB. This serializes the data to a single file and cab reduce the disk footprint of block coverage significantly (depending on overlap and number of files).""" if file_backing_disabled: raise Exception("[!] Can't save/load coverage db files without msgpack. Try `pip install msgpack`") save_dict = dict() save_dict["version"] = 1 # serialized covdb version save_dict["module_name"] = self.module_name save_dict["module_base"] = self.module_base save_dict["coverage_files"] = self.coverage_files # save tighter version of block dict {int: int} vice {int: str} block_dict_to_save = {} file_index_map = {filepath: self.coverage_files.index(filepath) for filepath in self.coverage_files} for block, trace_list in self.block_dict.items(): trace_id_list = [file_index_map[name] for name in trace_list] block_dict_to_save[block] = trace_id_list save_dict["block_dict"] = block_dict_to_save # write packed version to file with open(filename, "wb") as f: msgpack.dump(save_dict, f) self.filename = filename
Example #2
Source File: interface.py From simple-effective-text-matching-pytorch with Apache License 2.0 | 5 votes |
def load_embeddings(self): """generate embeddings suited for the current vocab or load previously cached ones.""" assert self.args.pretrained_embeddings embedding_file = os.path.join(self.args.output_dir, 'embedding.msgpack') if not os.path.exists(embedding_file): embeddings = load_embeddings(self.args.pretrained_embeddings, self.vocab, self.args.embedding_dim, mode=self.args.embedding_mode, lower=self.args.lower_case) with open(embedding_file, 'wb') as f: msgpack.dump(embeddings, f) else: with open(embedding_file, 'rb') as f: embeddings = msgpack.load(f) return embeddings
Example #3
Source File: io.py From io_three with MIT License | 5 votes |
def dump(filepath, data, options=None): """Dump the output to disk (JSON, msgpack, etc) :param filepath: output file path :param data: serializable data to write to disk :param options: (Default value = None) :type options: dict """ options = options or {} logger.debug("io.dump(%s, data, options=%s)", filepath, options) compress = options.get(constants.COMPRESSION, constants.NONE) if compress == constants.MSGPACK: try: import msgpack except ImportError: logger.error("msgpack module not found") raise logger.info("Dumping to msgpack") func = lambda x, y: msgpack.dump(x, y) mode = 'wb' else: round_off = options.get(constants.ENABLE_PRECISION) if round_off: _json.ROUND = options[constants.PRECISION] else: _json.ROUND = None indent = options.get(constants.INDENT, True) indent = 4 if indent else None logger.info("Dumping to JSON") func = lambda x, y: _json.json.dump(x, y, indent=indent) mode = 'w' logger.info("Writing to %s", filepath) with open(filepath, mode=mode) as stream: func(data, stream)
Example #4
Source File: serialization.py From dcase_util with MIT License | 5 votes |
def save_yaml(cls, filename, data): """Save data into YAML file Parameters ---------- filename : str Filename path data : Data to be stored Returns ------- None """ try: import yaml except ImportError: message = '{name}: Unable to import yaml module. You can install it with `pip install pyyaml`.'.format( name=cls.__class__.__name__ ) cls.logger().exception(message) raise ImportError(message) with open(filename, 'w') as outfile: outfile.write(yaml.dump(data, default_flow_style=False))
Example #5
Source File: serialization.py From dcase_util with MIT License | 5 votes |
def save_cpickle(cls, filename, data): """Save data into CPICKLE file Parameters ---------- filename : str Filename path data : Data to be stored Returns ------- None """ try: import cPickle as pickle except ImportError: try: import pickle except ImportError: message = '{name}: Unable to import pickle module.'.format( name=cls.__class__.__name__ ) cls.logger().exception(message) raise ImportError(message) pickle.dump(data, open(filename, 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
Example #6
Source File: serialization.py From dcase_util with MIT License | 5 votes |
def save_json(cls, filename, data): """Save data into JSON file Parameters ---------- filename : str Filename path data : Data to be stored Returns ------- None """ try: import ujson as json except ImportError: try: import json except ImportError: message = '{name}: Unable to import json module. You can install it with `pip install ujson`.'.format( name=cls.__class__.__name__ ) cls.logger().exception(message) raise ImportError(message) json.dump(data, open(filename, 'w'))
Example #7
Source File: serialization.py From dcase_util with MIT License | 5 votes |
def save_msgpack(cls, filename, data): """Save data into MSGPACK file Parameters ---------- filename : str Filename path data : Data to be stored Returns ------- None """ try: import msgpack except ImportError: message = '{name}: Unable to import msgpack module. You can install it with `pip install msgpack-python`.'.format( name=cls.__class__.__name__ ) cls.logger().exception(message) raise ImportError(message) msgpack.dump(data, open(filename, 'wb'), use_bin_type=True)
Example #8
Source File: serialization.py From dcase_util with MIT License | 5 votes |
def save_marshal(cls, filename, data): """Save data into MARSHAL file Parameters ---------- filename : str Filename path data : Data to be stored Returns ------- None """ try: import marshal except ImportError: message = '{name}: Unable to import marshal module. You can install it with `pip install pymarshal`.'.format( name=cls.__class__.__name__ ) cls.logger().exception(message) raise ImportError(message) marshal.dump(data, open(filename, 'wb'))
Example #9
Source File: AirSimClient.py From AirGym with MIT License | 5 votes |
def to_msgpack(self, *args, **kwargs): return self.__dict__ #msgpack.dump(self.to_dict(*args, **kwargs))
Example #10
Source File: interface.py From simple-effective-text-matching with Apache License 2.0 | 5 votes |
def load_embeddings(self): """generate embeddings suited for the current vocab or load previously cached ones.""" embedding_file = os.path.join(self.args.output_dir, 'embedding.msgpack') if not os.path.exists(embedding_file): embeddings = load_embeddings(self.args.pretrained_embeddings, self.vocab, self.args.embedding_dim, mode=self.args.embedding_mode, lower=self.args.lower_case) with open(embedding_file, 'wb') as f: msgpack.dump(embeddings, f) else: with open(embedding_file, 'rb') as f: embeddings = msgpack.load(f) return embeddings
Example #11
Source File: prepare.py From mikado with GNU Lesser General Public License v3.0 | 5 votes |
def _retrieve_data(shelf_name, shelve_stacks, tid, chrom, key, score, logger, merged_transcripts, chains, monoexonic_tree): shelf = shelve_stacks[shelf_name] strand, dumped = next(shelf["cursor"].execute("select strand, features from dump where tid = ?", (tid,))) dumped = json.loads(dumped) try: features = dumped["features"] exon_set = tuple(sorted([(exon[0], exon[1], strand) for exon in features["exon"]], key=operator.itemgetter(0, 1))) if len(exon_set) > 1: introns = tuple([(_[0] + 1, _[1] - 1) for _ in zip([_[1] for _ in exon_set][:-1], [_[0] for _ in exon_set][1:])]) else: introns = tuple([tuple([exon_set[0][0], exon_set[0][1]])]) cds_set = tuple(sorted([(exon[0], exon[1]) for exon in features.get("CDS", [])], key=operator.itemgetter(0, 1))) monoexonic = not (len(exon_set) > 1) data = dict() data["introns"], data["strand"], data["score"] = introns, strand, score data["monoexonic"] = monoexonic data["is_reference"], data["keep_redundant"] = dumped["is_reference"], dumped["keep_redundant"] data["start"], data["end"], data["cds_set"] = key[0], key[1], cds_set data["key"] = (tuple([tid, shelf_name]), chrom, (data["start"], data["end"])) if data["monoexonic"] is True: # Additional check at the end because the intervaltree class does not support item removal yet. caught = dict((i.value, merged_transcripts[i.value]) for i in monoexonic_tree.find(data["start"], data["end"]) if i.value in merged_transcripts) else: caught = dict((i, merged_transcripts[i]) for i in chains.get(data["introns"], [])) return data, caught except (TypeError, IndexError, ValueError, KeyError) as exc: logger.error("Error in analysing %s. Skipping. Error: %s", tid, exc) return None, None
Example #12
Source File: prepare.py From mikado with GNU Lesser General Public License v3.0 | 4 votes |
def store_transcripts(shelf_stacks, logger, seed=None): """ Function that analyses the exon lines from the original file and organises the data into a proper dictionary. :param shelf_stacks: dictionary containing the name and the handles of the shelf DBs :type shelf_stacks: dict :param logger: logger instance. :type logger: logging.Logger :param keep_redundant: boolean flag. If set to True, redundant transcripts will be kept in the output. :type keep_redundant: bool :return: transcripts: dictionary which will be the final output :rtype: transcripts """ transcripts = collections.defaultdict(dict) # Read from the temporary databases the indices (chrom, start, end, strand and transcript ID). # Then store for shelf_name in shelf_stacks: shelf_score = shelf_stacks[shelf_name]["score"] is_reference = shelf_stacks[shelf_name]["is_reference"] redundants_to_keep = shelf_stacks[shelf_name]["keep_redundant"] # redundants_to_keep = shelf_stacks[shelf_name]["keep_redundant"] try: for values in shelf_stacks[shelf_name]["cursor"].execute("SELECT chrom, start, end, strand, tid FROM dump"): chrom, start, end, strand, tid = values if (start, end) not in transcripts[chrom]: transcripts[chrom][(start, end)] = list() transcripts[chrom][(start, end)].append((tid, shelf_name, shelf_score, is_reference, redundants_to_keep)) except sqlite3.OperationalError as exc: raise sqlite3.OperationalError("dump not found in {}; excecption: {}".format(shelf_name, exc)) np.random.seed(seed) for chrom in sorted(transcripts.keys()): logger.debug("Starting with %s (%d positions)", chrom, len(transcripts[chrom])) yield from _analyse_chrom(chrom, transcripts[chrom], shelve_stacks=shelf_stacks, logger=logger)
Example #13
Source File: prepare_misc_test.py From mikado with GNU Lesser General Public License v3.0 | 4 votes |
def test_normal(self): logger, listener, logging_queue = self.create_logger("test_normal") with self.assertLogs(logger=logger, level="DEBUG") as cmo: # FASTA out and GTF out are just the file names, without the temporary directory # Moreover they will be complemented by the identifier! batch_file = tempfile.NamedTemporaryFile(mode="wb", delete=False) proc = ProcRunner(checking.CheckingProcess, batch_file, logging_queue, shelve_stacks=[], fasta=self.fasta, identifier=0, fasta_out=self.fasta_out, gtf_out=self.gtf_out, seed=None, tmpdir=tempfile.gettempdir(), log_level="DEBUG") import msgpack msgpack.dump([], batch_file) proc.start() time.sleep(0.1) # Necessary otherwise the check might be too fast for the FileSystem self.assertEqual(proc.func.fasta_out, os.path.join(tempfile.gettempdir(), self.fasta_out + "-0")) self.assertTrue(os.path.exists(proc.func.fasta_out), proc.func.fasta_out) self.assertEqual(proc.func.gtf_out, os.path.join(tempfile.gettempdir(), self.gtf_out + "-0")) self.assertTrue(os.path.exists(proc.func.gtf_out), proc.func.gtf_out) self.submission_queue.put(("EXIT", None, None, None)) time.sleep(0.1) proc.stop() os.remove(proc.func.fasta_out) os.remove(proc.func.gtf_out) batch_file.close() assert not proc.is_alive() self.maxDiff = 10000 # self.assertEqual(cmo.output, [ # "DEBUG:Checker-0:Starting Checker-0", # "DEBUG:Checker-0:Created output FASTA {} and GTF {}".format(proc.func.fasta_out, proc.func.gtf_out), # "DEBUG:Checker-0:(('GT', 'AG'), ('GC', 'AG'), ('AT', 'AC'))", # "DEBUG:Checker-0:Finished for Checker-0"]) self.assertIsInstance(proc.func, mp.Process) with self.assertRaises(TypeError): _ = pickle.dumps(proc.func)