Python preprocess.preprocess() Examples
The following are 7
code examples of preprocess.preprocess().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
preprocess
, or try the search function
.
Example #1
Source File: train.py From DeepRNN with MIT License | 6 votes |
def main(): parser = argparse.ArgumentParser(description='Deep BiLSTM with Residual') add_arguments(parser) args = parser.parse_args() print(args) hparams = tf.contrib.training.HParams(**vars(args)) # check GPU device utils.print_out("# Devices visible to TensorFlow: %s" % repr(tf.Session().list_devices())) # create dirs expr_dir, config_dir, log_dir, data_dir, model_dir, figure_dir, result_dir = create_dirs(hparams) # save hyperameter check_and_save_hparams(config_dir, hparams) stage = 'test' # preprocess','train_eval', or 'test' assert stage in [, 'train_eval', 'test'], 'stage not recognized' utils.print_out('stage: %s' % stage) # if stage == 'preprocess': # preprocess.preprocess(hparams, data_dir) # the data are stored in the data_dir for the training step if stage == 'train_eval': process.train_eval(hparams, data_dir, model_dir, log_dir) if stage == 'test': process.infer(hparams, data_dir, model_dir, result_dir)
Example #2
Source File: utils.py From MalConv-keras with MIT License | 5 votes |
def data_generator(data, labels, max_len=200000, batch_size=64, shuffle=True): idx = np.arange(len(data)) if shuffle: np.random.shuffle(idx) batches = [idx[range(batch_size*i, min(len(data), batch_size*(i+1)))] for i in range(len(data)//batch_size+1)] while True: for i in batches: xx = preprocess(data[i], max_len)[0] yy = labels[i] yield (xx, yy)
Example #3
Source File: data_shuffled.py From DeepPicar-v2 with GNU General Public License v2.0 | 5 votes |
def load_imgs(): global imgs global wheels for p in purposes: for epoch_id in epochs[p]: print ('processing and loading "{}" epoch {} into memory, current num of imgs is {}...'.format(p, epoch_id, len(imgs[p]))) # vid_path = cm.jn(data_dir, 'epoch{:0>2}_front.mkv'.format(epoch_id)) vid_path = cm.jn(data_dir, 'out-video-{}.avi'.format(epoch_id)) assert os.path.isfile(vid_path) frame_count = cm.frame_count(vid_path) cap = cv2.VideoCapture(vid_path) # csv_path = cm.jn(data_dir, 'epoch{:0>2}_steering.csv'.format(epoch_id)) csv_path = cm.jn(data_dir, 'out-key-{}.csv'.format(epoch_id)) assert os.path.isfile(csv_path) rows = cm.fetch_csv_data(csv_path) print ("{}, {}".format(len(rows), frame_count)) assert frame_count == len(rows) yy = [[float(row['wheel'])] for row in rows] while True: ret, img = cap.read() if not ret: break img = preprocess.preprocess(img) imgs[p].append(img) wheels[p].extend(yy) assert len(imgs[p]) == len(wheels[p]) cap.release()
Example #4
Source File: gen_adversarial.py From MalConv-keras with MIT License | 4 votes |
def gen_adv_samples(model, fn_list, pad_percent=0.1, step_size=0.001, thres=0.5): ### search for nearest neighbor in embedding space ### def emb_search(org, adv, pad_idx, pad_len, neigh): out = org.copy() for idx in range(pad_idx, pad_idx+pad_len): target = adv[idx].reshape(1, -1) best_idx = neigh.kneighbors(target, 1, False)[0][0] out[0][idx] = best_idx return out max_len = int(model.input.shape[1]) emb_layer = model.layers[1] emb_weight = emb_layer.get_weights()[0] inp2emb = K.function([model.input]+ [K.learning_phase()], [emb_layer.output]) # [function] Map sequence to embedding # Build neighbor searches neigh = NearestNeighbors(1) neigh.fit(emb_weight) log = utils.logger() adv_samples = [] for e, fn in enumerate(fn_list): ### run one file at a time due to different padding length, [slow] inp, len_list = preprocess([fn], max_len) inp_emb = np.squeeze(np.array(inp2emb([inp, False])), 0) pad_idx = len_list[0] pad_len = max(min(int(len_list[0]*pad_percent), max_len-pad_idx), 0) org_score = model.predict(inp)[0][0] ### origianl score, 0 -> malicious, 1 -> benign loss, pred = float('nan'), float('nan') if pad_len > 0: if org_score < thres: adv_emb, gradient, loss = fgsm(model, inp_emb, pad_idx, pad_len, e, step_size) adv = emb_search(inp, adv_emb[0], pad_idx, pad_len, neigh) pred = model.predict(adv)[0][0] final_adv = adv[0][:pad_idx+pad_len] else: # use origin file final_adv = inp[0][:pad_idx] log.write(fn, org_score, pad_idx, pad_len, loss, pred) # sequence to bytes bin_adv = bytes(list(final_adv)) adv_samples.append(bin_adv) return adv_samples, log
Example #5
Source File: run.py From DeepPicar-v2 with GNU General Public License v2.0 | 4 votes |
def process_epoch(epoch_id): print '---------- processing video for epoch {} ----------'.format(epoch_id) vid_path = cm.jn(params.data_dir, 'out-video-{}.avi'.format(epoch_id)) frame_count = cm.frame_count(vid_path) vid_scaled_path = cm.jn(params.data_dir, 'out-video-{}-scaled.avi'.format(epoch_id)) if not os.path.exists(vid_scaled_path): assert os.path.isfile(vid_path) os.system("ffmpeg -i " + vid_path + " -vf scale=1280:720 " + vid_scaled_path) print("ffmpeg -i " + vid_path + " -vf scale=1280:720 " + vid_scaled_path) vid_path = vid_scaled_path cap = cv2.VideoCapture(vid_path) machine_steering = [] print 'performing inference...' time_start = time.time() for frame_id in xrange(frame_count): ret, img = cap.read() assert ret prep_start = time.time() img = preprocess.preprocess(img) pred_start = time.time() rad = model.y.eval(feed_dict={model.x: [img], model.keep_prob: 1.0})[0][0] deg = rad2deg(rad) pred_end = time.time() prep_time = pred_start - prep_start pred_time = pred_end - pred_start # print 'pred: {} deg. took {} ms'.format(deg, pred_time * 1000) # print 'pred: {} deg (rad={})'.format(deg, rad) machine_steering.append(deg) cap.release() fps = frame_count / (time.time() - time_start) print ('completed inference, total frames: {}, average fps: {} Hz'.format(frame_count, round(fps, 1))) # print "Machine Steering:", machine_steering return machine_steering
Example #6
Source File: data_shuffled.py From DeepPicar-v2 with GNU General Public License v2.0 | 4 votes |
def load_imgs_v2(): global imgs global wheels for epoch_id in epochs['all']: print ('processing and loading epoch {} into memorys. train:{}, val:{}'.format( epoch_id, len(imgs['train']), len(imgs['val']))) # vid_path = cm.jn(data_dir, 'epoch{:0>2}_front.mkv'.format(epoch_id)) vid_path = cm.jn(data_dir, 'out-video-{}.avi'.format(epoch_id)) if not os.path.isfile(vid_path): continue frame_count = cm.frame_count(vid_path) cap = cv2.VideoCapture(vid_path) # csv_path = cm.jn(data_dir, 'epoch{:0>2}_steering.csv'.format(epoch_id)) csv_path = cm.jn(data_dir, 'out-key-{}.csv'.format(epoch_id)) assert os.path.isfile(csv_path) rows = cm.fetch_csv_data(csv_path) print ("{}, {}".format(len(rows), frame_count)) assert frame_count == len(rows) for row in rows: ret, img = cap.read() if not ret: break img = preprocess.preprocess(img) angle = float(row['wheel']) if random.random() < params.train_pct: imgs['train'].append(img) wheels['train'].append([angle]) else: imgs['val'].append(img) wheels['val'].append([angle]) cap.release() print ('Total data: train:{}, val:{}'.format(len(imgs['train']), len(imgs['val']))) # load all preprocessed training images into memory
Example #7
Source File: data_ordered.py From DeepPicar-v2 with GNU General Public License v2.0 | 4 votes |
def load_batch(purpose): global current_batch_id xx = [] yy = [] # fetch the batch definition batch_id = current_batch_id[purpose] assert batch_id < len(batches[purpose]) batch = batches[purpose][batch_id] epoch_id, frame_start, frame_end = batch['epoch_id'], batch['frame_start'], batch['frame_end'] assert epoch_id is not None and frame_start is not None and frame_end is not None # update the current batch current_batch_id[purpose] = (current_batch_id[purpose] + 1) % len(batches[purpose]) # fetch image and steering data vid_path = cm.jn(data_dir, 'epoch{:0>2}_front.mkv'.format(epoch_id)) assert os.path.isfile(vid_path) frame_count = cm.frame_count(vid_path) cap = cv2.VideoCapture(vid_path) cm.cv2_goto_frame(cap, frame_start) csv_path = cm.jn(data_dir, 'epoch{:0>2}_steering.csv'.format(epoch_id)) assert os.path.isfile(csv_path) rows = cm.fetch_csv_data(csv_path) assert frame_count == len(rows) yy = [[float(row['wheel'])] for row in rows[frame_start:frame_end+1]] for frame_id in xrange(frame_start, frame_end+1): ret, img = cap.read() assert ret img = preprocess.preprocess(img) #cv2.imwrite(os.path.abspath('output/sample_frame.jpg'), img) xx.append(img) assert len(xx) == len(yy) cap.release() return xx, yy