Python gym.undo_logger_setup() Examples
The following are 5
code examples of gym.undo_logger_setup().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
gym
, or try the search function
.
Example #1
Source File: es.py From learning2run with MIT License | 6 votes |
def setup(exp, single_threaded): import gym gym.undo_logger_setup() from . import policies, tf_util config = Config(**exp['config']) if 'env_id' in exp: env = gym.make(exp['env_id']) elif 'env_target' in exp: env_target = exp['env_target'] (module_str, cls_str) = env_target.split(":") module = importlib.import_module(module_str) cls = getattr(module, cls_str) env = cls(**exp['env_params']) else: raise NotImplementedError sess = make_session(single_threaded=single_threaded) policy = getattr(policies, exp['policy']['type'])(env.observation_space, env.action_space, **exp['policy']['args']) tf_util.initialize() return config, env, sess, policy
Example #2
Source File: test_envs.py From universe with MIT License | 6 votes |
def test_smoke(env_id): """Check that environments start up without errors and that we can extract rewards and observations""" gym.undo_logger_setup() logging.getLogger().setLevel(logging.INFO) env = gym.make(env_id) if env.metadata.get('configure.required', False): if os.environ.get('FORCE_LATEST_UNIVERSE_DOCKER_RUNTIMES'): # Used to test universe-envs in CI configure_with_latest_docker_runtime_tag(env) else: env.configure(remotes=1) env = wrappers.Unvectorize(env) env.reset() _rollout(env, timestep_limit=60*30) # Check a rollout
Example #3
Source File: es.py From evolution-strategies-starter with MIT License | 5 votes |
def setup(exp, single_threaded): import gym gym.undo_logger_setup() from . import policies, tf_util config = Config(**exp['config']) env = gym.make(exp['env_id']) sess = make_session(single_threaded=single_threaded) policy = getattr(policies, exp['policy']['type'])(env.observation_space, env.action_space, **exp['policy']['args']) tf_util.initialize() return config, env, sess, policy
Example #4
Source File: test_core_envs_semantics.py From universe with MIT License | 5 votes |
def test_nice_vnc_semantics_match(spec, matcher, wrapper): # Check that when running over VNC or using the raw environment, # semantics match exactly. gym.undo_logger_setup() logging.getLogger().setLevel(logging.INFO) spaces.seed(0) vnc_env = spec.make() if vnc_env.metadata.get('configure.required', False): vnc_env.configure(remotes=1) vnc_env = wrapper(vnc_env) vnc_env = wrappers.Unvectorize(vnc_env) env = gym.make(spec._kwargs['gym_core_id']) env.seed(0) vnc_env.seed(0) # Check that reset observations work reset(matcher, env, vnc_env, stage='initial reset') # Check a full rollout rollout(matcher, env, vnc_env, timestep_limit=50, stage='50 steps') # Reset to start a new episode reset(matcher, env, vnc_env, stage='reset to new episode') # Check that a step into the next episode works rollout(matcher, env, vnc_env, timestep_limit=1, stage='1 step in new episode') # Make sure env can be reseeded env.seed(1) vnc_env.seed(1) reset(matcher, env, vnc_env, 'reseeded reset') rollout(matcher, env, vnc_env, timestep_limit=1, stage='reseeded step')
Example #5
Source File: utils.py From categorical-dqn with MIT License | 5 votes |
def env_factory(cmdl, mode): # Undo the default logger and configure a new one. gym.undo_logger_setup() logger = logging.getLogger() logger.setLevel(logging.WARNING) print(clr("[Main] Constructing %s environment." % mode, attrs=['bold'])) env = gym.make(cmdl.env_name) if hasattr(cmdl, 'rescale_dims'): state_dims = (cmdl.rescale_dims, cmdl.rescale_dims) else: state_dims = env.observation_space.shape[0:2] env_class, hist_len, cuda = cmdl.env_class, cmdl.hist_len, cmdl.cuda if mode == "training": env = PreprocessFrames(env, env_class, hist_len, state_dims, cuda) if hasattr(cmdl, 'reward_clamp') and cmdl.reward_clamp: env = SqueezeRewards(env) if hasattr(cmdl, 'done_after_lost_life') and cmdl.done_after_lost_life: env = DoneAfterLostLife(env) print('-' * 50) return env elif mode == "evaluation": if cmdl.eval_env_name != cmdl.env_name: print(clr("[%s] Warning! evaluating on a different env: %s" % ("Main", cmdl.eval_env_name), 'red', attrs=['bold'])) env = gym.make(cmdl.eval_env_name) env = PreprocessFrames(env, env_class, hist_len, state_dims, cuda) env = EvaluationMonitor(env, cmdl) print('-' * 50) return env