Python builtins.min() Examples
The following are 30
code examples of builtins.min().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
builtins
, or try the search function
.
Example #1
Source File: tf_util.py From Run-Skeleton-Run with MIT License | 6 votes |
def __call__(self, *inputvals): assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs) nondata_vals = inputvals[0:len(self.nondata_inputs)] data_vals = inputvals[len(self.nondata_inputs):] feed_dict = dict(zip(self.nondata_inputs, nondata_vals)) n = data_vals[0].shape[0] for v in data_vals[1:]: assert v.shape[0] == n for i_start in range(0, n, self.batch_size): slice_vals = [v[i_start:builtins.min(i_start + self.batch_size, n)] for v in data_vals] for (var, val) in zip(self.data_inputs, slice_vals): feed_dict[var] = val results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict) if i_start == 0: sum_results = results else: for i in range(len(results)): sum_results[i] = sum_results[i] + results[i] for i in range(len(results)): sum_results[i] = sum_results[i] / n return sum_results # ================================================================ # Modules # ================================================================
Example #2
Source File: tf_util.py From multiagent-gail with MIT License | 6 votes |
def __call__(self, *inputvals): assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs) nondata_vals = inputvals[0:len(self.nondata_inputs)] data_vals = inputvals[len(self.nondata_inputs):] feed_dict = dict(zip(self.nondata_inputs, nondata_vals)) n = data_vals[0].shape[0] for v in data_vals[1:]: assert v.shape[0] == n for i_start in range(0, n, self.batch_size): slice_vals = [v[i_start:builtins.min(i_start + self.batch_size, n)] for v in data_vals] for (var, val) in zip(self.data_inputs, slice_vals): feed_dict[var] = val results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict) if i_start == 0: sum_results = results else: for i in range(len(results)): sum_results[i] = sum_results[i] + results[i] for i in range(len(results)): sum_results[i] = sum_results[i] / n return sum_results # ================================================================ # Modules # ================================================================
Example #3
Source File: tf_util.py From rl-teacher with MIT License | 6 votes |
def __call__(self, *inputvals): assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs) nondata_vals = inputvals[0:len(self.nondata_inputs)] data_vals = inputvals[len(self.nondata_inputs):] feed_dict = dict(zip(self.nondata_inputs, nondata_vals)) n = data_vals[0].shape[0] for v in data_vals[1:]: assert v.shape[0] == n for i_start in range(0, n, self.batch_size): slice_vals = [v[i_start:builtins.min(i_start + self.batch_size, n)] for v in data_vals] for (var, val) in zip(self.data_inputs, slice_vals): feed_dict[var] = val results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict) if i_start == 0: sum_results = results else: for i in range(len(results)): sum_results[i] = sum_results[i] + results[i] for i in range(len(results)): sum_results[i] = sum_results[i] / n return sum_results # ================================================================ # Modules # ================================================================
Example #4
Source File: tf_util.py From rl-attack with MIT License | 6 votes |
def __call__(self, *inputvals): assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs) nondata_vals = inputvals[0:len(self.nondata_inputs)] data_vals = inputvals[len(self.nondata_inputs):] feed_dict = dict(zip(self.nondata_inputs, nondata_vals)) n = data_vals[0].shape[0] for v in data_vals[1:]: assert v.shape[0] == n for i_start in range(0, n, self.batch_size): slice_vals = [v[i_start:builtins.min(i_start + self.batch_size, n)] for v in data_vals] for (var, val) in zip(self.data_inputs, slice_vals): feed_dict[var] = val results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict) if i_start == 0: sum_results = results else: for i in range(len(results)): sum_results[i] = sum_results[i] + results[i] for i in range(len(results)): sum_results[i] = sum_results[i] / n return sum_results # ================================================================ # Modules # ================================================================
Example #5
Source File: tf_util.py From deeprl-baselines with MIT License | 6 votes |
def __call__(self, *inputvals): assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs) nondata_vals = inputvals[0:len(self.nondata_inputs)] data_vals = inputvals[len(self.nondata_inputs):] feed_dict = dict(zip(self.nondata_inputs, nondata_vals)) n = data_vals[0].shape[0] for v in data_vals[1:]: assert v.shape[0] == n for i_start in range(0, n, self.batch_size): slice_vals = [v[i_start:builtins.min(i_start + self.batch_size, n)] for v in data_vals] for (var, val) in zip(self.data_inputs, slice_vals): feed_dict[var] = val results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict) if i_start == 0: sum_results = results else: for i in range(len(results)): sum_results[i] = sum_results[i] + results[i] for i in range(len(results)): sum_results[i] = sum_results[i] / n return sum_results # ================================================================ # Modules # ================================================================
Example #6
Source File: tf_util.py From action-branching-agents with MIT License | 6 votes |
def __call__(self, *inputvals): assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs) nondata_vals = inputvals[0:len(self.nondata_inputs)] data_vals = inputvals[len(self.nondata_inputs):] feed_dict = dict(zip(self.nondata_inputs, nondata_vals)) n = data_vals[0].shape[0] for v in data_vals[1:]: assert v.shape[0] == n for i_start in range(0, n, self.batch_size): slice_vals = [v[i_start:builtins.min(i_start + self.batch_size, n)] for v in data_vals] for (var, val) in zip(self.data_inputs, slice_vals): feed_dict[var] = val results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict) if i_start == 0: sum_results = results else: for i in range(len(results)): sum_results[i] = sum_results[i] + results[i] for i in range(len(results)): sum_results[i] = sum_results[i] / n return sum_results # ================================================================ # Modules # ================================================================
Example #7
Source File: tf_util.py From rl-attack-detection with MIT License | 6 votes |
def __call__(self, *inputvals): assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs) nondata_vals = inputvals[0:len(self.nondata_inputs)] data_vals = inputvals[len(self.nondata_inputs):] feed_dict = dict(zip(self.nondata_inputs, nondata_vals)) n = data_vals[0].shape[0] for v in data_vals[1:]: assert v.shape[0] == n for i_start in range(0, n, self.batch_size): slice_vals = [v[i_start:builtins.min(i_start + self.batch_size, n)] for v in data_vals] for (var, val) in zip(self.data_inputs, slice_vals): feed_dict[var] = val results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict) if i_start == 0: sum_results = results else: for i in range(len(results)): sum_results[i] = sum_results[i] + results[i] for i in range(len(results)): sum_results[i] = sum_results[i] / n return sum_results # ================================================================ # Modules # ================================================================
Example #8
Source File: tf_util.py From gail-tf with MIT License | 6 votes |
def __call__(self, *inputvals): assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs) nondata_vals = inputvals[0:len(self.nondata_inputs)] data_vals = inputvals[len(self.nondata_inputs):] feed_dict = dict(zip(self.nondata_inputs, nondata_vals)) n = data_vals[0].shape[0] for v in data_vals[1:]: assert v.shape[0] == n for i_start in range(0, n, self.batch_size): slice_vals = [v[i_start:builtins.min(i_start + self.batch_size, n)] for v in data_vals] for (var, val) in zip(self.data_inputs, slice_vals): feed_dict[var] = val results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict) if i_start == 0: sum_results = results else: for i in range(len(results)): sum_results[i] = sum_results[i] + results[i] for i in range(len(results)): sum_results[i] = sum_results[i] / n return sum_results # ================================================================ # Modules # ================================================================
Example #9
Source File: tf_util.py From emdqn with MIT License | 6 votes |
def __call__(self, *inputvals): assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs) nondata_vals = inputvals[0:len(self.nondata_inputs)] data_vals = inputvals[len(self.nondata_inputs):] feed_dict = dict(zip(self.nondata_inputs, nondata_vals)) n = data_vals[0].shape[0] for v in data_vals[1:]: assert v.shape[0] == n for i_start in range(0, n, self.batch_size): slice_vals = [v[i_start:builtins.min(i_start + self.batch_size, n)] for v in data_vals] for (var, val) in zip(self.data_inputs, slice_vals): feed_dict[var] = val results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict) if i_start == 0: sum_results = results else: for i in range(len(results)): sum_results[i] = sum_results[i] + results[i] for i in range(len(results)): sum_results[i] = sum_results[i] / n return sum_results # ================================================================ # Modules # ================================================================
Example #10
Source File: tf_util.py From NoisyNet-DQN with MIT License | 6 votes |
def __call__(self, *inputvals): assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs) nondata_vals = inputvals[0:len(self.nondata_inputs)] data_vals = inputvals[len(self.nondata_inputs):] feed_dict = dict(zip(self.nondata_inputs, nondata_vals)) n = data_vals[0].shape[0] for v in data_vals[1:]: assert v.shape[0] == n for i_start in range(0, n, self.batch_size): slice_vals = [v[i_start:builtins.min(i_start + self.batch_size, n)] for v in data_vals] for (var, val) in zip(self.data_inputs, slice_vals): feed_dict[var] = val results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict) if i_start == 0: sum_results = results else: for i in range(len(results)): sum_results[i] = sum_results[i] + results[i] for i in range(len(results)): sum_results[i] = sum_results[i] / n return sum_results # ================================================================ # Modules # ================================================================
Example #11
Source File: tf_util.py From ape-x with Apache License 2.0 | 6 votes |
def __call__(self, *inputvals): assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs) nondata_vals = inputvals[0:len(self.nondata_inputs)] data_vals = inputvals[len(self.nondata_inputs):] feed_dict = dict(zip(self.nondata_inputs, nondata_vals)) n = data_vals[0].shape[0] for v in data_vals[1:]: assert v.shape[0] == n for i_start in range(0, n, self.batch_size): slice_vals = [v[i_start:builtins.min(i_start + self.batch_size, n)] for v in data_vals] for (var, val) in zip(self.data_inputs, slice_vals): feed_dict[var] = val results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict) if i_start == 0: sum_results = results else: for i in range(len(results)): sum_results[i] = sum_results[i] + results[i] for i in range(len(results)): sum_results[i] = sum_results[i] / n return sum_results # ================================================================ # Modules # ================================================================
Example #12
Source File: tf_util.py From BackpropThroughTheVoidRL with MIT License | 6 votes |
def __call__(self, *inputvals): assert len(inputvals) == len(self.nondata_inputs) + len(self.data_inputs) nondata_vals = inputvals[0:len(self.nondata_inputs)] data_vals = inputvals[len(self.nondata_inputs):] feed_dict = dict(zip(self.nondata_inputs, nondata_vals)) n = data_vals[0].shape[0] for v in data_vals[1:]: assert v.shape[0] == n for i_start in range(0, n, self.batch_size): slice_vals = [v[i_start:builtins.min(i_start + self.batch_size, n)] for v in data_vals] for (var, val) in zip(self.data_inputs, slice_vals): feed_dict[var] = val results = tf.get_default_session().run(self.outputs, feed_dict=feed_dict) if i_start == 0: sum_results = results else: for i in range(len(results)): sum_results[i] = sum_results[i] + results[i] for i in range(len(results)): sum_results[i] = sum_results[i] / n return sum_results # ================================================================ # Modules # ================================================================
Example #13
Source File: tf_util.py From emdqn with MIT License | 5 votes |
def min(x, axis=None, keepdims=False): axis = None if axis is None else [axis] return tf.reduce_min(x, axis=axis, keep_dims=keepdims)
Example #14
Source File: new_min_max.py From V1EngineeringInc-Docs with Creative Commons Attribution Share Alike 4.0 International | 5 votes |
def newmin(*args, **kwargs): return new_min_max(_builtin_min, *args, **kwargs)
Example #15
Source File: min.py From pyramda with MIT License | 5 votes |
def min(xs): return builtins.min(xs)
Example #16
Source File: new_min_max.py From Tautulli with GNU General Public License v3.0 | 5 votes |
def newmin(*args, **kwargs): return new_min_max(_builtin_min, *args, **kwargs)
Example #17
Source File: tf_util.py From deeprl-baselines with MIT License | 5 votes |
def min(x, axis=None, keepdims=False): axis = None if axis is None else [axis] return tf.reduce_min(x, axis=axis, keep_dims=keepdims)
Example #18
Source File: tf_util.py From BackpropThroughTheVoidRL with MIT License | 5 votes |
def min(x, axis=None, keepdims=False): axis = None if axis is None else [axis] return tf.reduce_min(x, axis=axis, keep_dims=keepdims)
Example #19
Source File: fypp.py From fypp with BSD 2-Clause "Simplified" License | 5 votes |
def _process_arguments(self, args, keywords): kwdict = dict(keywords) argdict = {} nargs = min(len(args), len(self._argnames)) for iarg in range(nargs): argdict[self._argnames[iarg]] = args[iarg] if nargs < len(args): if self._varpos is None: msg = "macro '{0}' called with too many positional arguments "\ "(expected: {1}, received: {2})"\ .format(self._name, len(self._argnames), len(args)) raise FyppFatalError(msg, self._fname, self._spans[0]) else: argdict[self._varpos] = list(args[nargs:]) elif self._varpos is not None: argdict[self._varpos] = [] for argname in self._argnames[:nargs]: if argname in kwdict: msg = "got multiple values for argument '{0}'".format(argname) raise FyppFatalError(msg, self._fname, self._spans[0]) if nargs < len(self._argnames): for argname in self._argnames[nargs:]: if argname in kwdict: argdict[argname] = kwdict.pop(argname) elif argname in self._defaults: argdict[argname] = self._defaults[argname] else: msg = "macro '{0}' called without mandatory positional "\ "argument '{1}'".format(self._name, argname) raise FyppFatalError(msg, self._fname, self._spans[0]) if kwdict and self._varkw is None: kwstr = "', '".join(kwdict.keys()) msg = "macro '{0}' called with unknown keyword argument(s) '{1}'"\ .format(self._name, kwstr) raise FyppFatalError(msg, self._fname, self._spans[0]) if self._varkw is not None: argdict[self._varkw] = kwdict return argdict
Example #20
Source File: stats.py From Turing with MIT License | 5 votes |
def min_index(args): return args.index(builtins.min(args))
Example #21
Source File: stats.py From Turing with MIT License | 5 votes |
def min(args): return builtins.min(args)
Example #22
Source File: sanity.py From reframe with BSD 3-Clause "New" or "Revised" License | 5 votes |
def min(*args): '''Replacement for the built-in :func:`min() <python:min>` function.''' return builtins.min(*args)
Example #23
Source File: tf_util.py From multiagent-gail with MIT License | 5 votes |
def min(x, axis=None, keepdims=False): axis = None if axis is None else [axis] return tf.reduce_min(x, axis=axis, keep_dims=keepdims)
Example #24
Source File: tf_util.py From rl-teacher with MIT License | 5 votes |
def min(x, axis=None, keepdims=False): axis = None if axis is None else [axis] return tf.reduce_min(x, axis=axis, keep_dims=keepdims)
Example #25
Source File: cluster_monitor.py From KubeOperator with Apache License 2.0 | 5 votes |
def sync_node_time(cluster): hosts = C_Host.objects.filter( Q(project_id=cluster.id) & ~Q(name='localhost') & ~Q(name='127.0.0.1') & ~Q(name='::1')) data = [] times = [] result = { 'success': True, 'data': [] } for host in hosts: ssh_config = SshConfig(host=host.ip, port=host.port, username=host.username, password=host.password, private_key=None) ssh_client = SSHClient(ssh_config) res = ssh_client.run_cmd('date') gmt_date = res[0] GMT_FORMAT = '%a %b %d %H:%M:%S CST %Y' date = time.strptime(gmt_date, GMT_FORMAT) timeStamp = int(time.mktime(date)) times.append(timeStamp) show_time = time.strftime('%Y-%m-%d %H:%M:%S', date) time_data = { 'hostname': host.name, 'date': show_time, } data.append(time_data) result['data'] = data max = builtins.max(times) min = builtins.min(times) # 如果最大值减最小值超过5分钟 则判断有错 if (max - min) > 300000: result['success'] = False return result
Example #26
Source File: tf_util.py From rl-attack with MIT License | 5 votes |
def min(x, axis=None, keepdims=False): axis = None if axis is None else [axis] return tf.reduce_min(x, axis=axis, keep_dims=keepdims)
Example #27
Source File: new_min_max.py From addon with GNU General Public License v3.0 | 5 votes |
def newmin(*args, **kwargs): return new_min_max(_builtin_min, *args, **kwargs)
Example #28
Source File: tf_util.py From action-branching-agents with MIT License | 5 votes |
def min(x, axis=None, keepdims=False): axis = None if axis is None else [axis] return tf.reduce_min(x, axis=axis, keepdims=keepdims)
Example #29
Source File: tf_util.py From Run-Skeleton-Run with MIT License | 5 votes |
def min(x, axis=None, keepdims=False): axis = None if axis is None else [axis] return tf.reduce_min(x, axis=axis, keep_dims=keepdims)
Example #30
Source File: tf_util.py From rl-attack-detection with MIT License | 5 votes |
def min(x, axis=None, keepdims=False): axis = None if axis is None else [axis] return tf.reduce_min(x, axis=axis, keep_dims=keepdims)