Python sklearn.linear_model.OrthogonalMatchingPursuit() Examples
The following are 4
code examples of sklearn.linear_model.OrthogonalMatchingPursuit().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.linear_model
, or try the search function
.
Example #1
Source File: test_sklearn_glm_regressor_converter.py From sklearn-onnx with MIT License | 6 votes |
def test_model_orthogonal_matching_pursuit(self): model, X = fit_regression_model( linear_model.OrthogonalMatchingPursuit()) model_onnx = convert_sklearn( model, "orthogonal matching pursuit", [("input", FloatTensorType([None, X.shape[1]]))]) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, verbose=False, basename="SklearnOrthogonalMatchingPursuit-Dec4", allow_failure="StrictVersion(" "onnxruntime.__version__)" "<= StrictVersion('0.2.1')", )
Example #2
Source File: mnist_estimators.py From csgm with MIT License | 5 votes |
def omp_estimator(hparams): """OMP estimator""" omp_est = OrthogonalMatchingPursuit(n_nonzero_coefs=hparams.omp_k) def estimator(A_val, y_batch_val, hparams): x_hat_batch = [] for i in range(hparams.batch_size): y_val = y_batch_val[i] omp_est.fit(A_val.T, y_val.reshape(hparams.num_measurements)) x_hat = omp_est.coef_ x_hat = np.reshape(x_hat, [-1]) x_hat = np.maximum(np.minimum(x_hat, 1), 0) x_hat_batch.append(x_hat) x_hat_batch = np.asarray(x_hat_batch) return x_hat_batch return estimator
Example #3
Source File: OrthogonalMatchingPursuit.py From mltk-algo-contrib with Apache License 2.0 | 5 votes |
def __init__(self, options): self.handle_options(options) params = options.get('params', {}) out_params = convert_params( params, floats=['tol'], strs=['kernel'], ints=['n_nonzero_coefs'], bools=['fit_intercept', 'normalize'], ) self.estimator = _OrthogonalMatchingPursuit(**out_params)
Example #4
Source File: test_linear_model.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.linear_model.ARDRegression, lm.ARDRegression) self.assertIs(df.linear_model.BayesianRidge, lm.BayesianRidge) self.assertIs(df.linear_model.ElasticNet, lm.ElasticNet) self.assertIs(df.linear_model.ElasticNetCV, lm.ElasticNetCV) self.assertIs(df.linear_model.HuberRegressor, lm.HuberRegressor) self.assertIs(df.linear_model.Lars, lm.Lars) self.assertIs(df.linear_model.LarsCV, lm.LarsCV) self.assertIs(df.linear_model.Lasso, lm.Lasso) self.assertIs(df.linear_model.LassoCV, lm.LassoCV) self.assertIs(df.linear_model.LassoLars, lm.LassoLars) self.assertIs(df.linear_model.LassoLarsCV, lm.LassoLarsCV) self.assertIs(df.linear_model.LassoLarsIC, lm.LassoLarsIC) self.assertIs(df.linear_model.LinearRegression, lm.LinearRegression) self.assertIs(df.linear_model.LogisticRegression, lm.LogisticRegression) self.assertIs(df.linear_model.LogisticRegressionCV, lm.LogisticRegressionCV) self.assertIs(df.linear_model.MultiTaskLasso, lm.MultiTaskLasso) self.assertIs(df.linear_model.MultiTaskElasticNet, lm.MultiTaskElasticNet) self.assertIs(df.linear_model.MultiTaskLassoCV, lm.MultiTaskLassoCV) self.assertIs(df.linear_model.MultiTaskElasticNetCV, lm.MultiTaskElasticNetCV) self.assertIs(df.linear_model.OrthogonalMatchingPursuit, lm.OrthogonalMatchingPursuit) self.assertIs(df.linear_model.OrthogonalMatchingPursuitCV, lm.OrthogonalMatchingPursuitCV) self.assertIs(df.linear_model.PassiveAggressiveClassifier, lm.PassiveAggressiveClassifier) self.assertIs(df.linear_model.PassiveAggressiveRegressor, lm.PassiveAggressiveRegressor) self.assertIs(df.linear_model.Perceptron, lm.Perceptron) self.assertIs(df.linear_model.RandomizedLasso, lm.RandomizedLasso) self.assertIs(df.linear_model.RandomizedLogisticRegression, lm.RandomizedLogisticRegression) self.assertIs(df.linear_model.RANSACRegressor, lm.RANSACRegressor) self.assertIs(df.linear_model.Ridge, lm.Ridge) self.assertIs(df.linear_model.RidgeClassifier, lm.RidgeClassifier) self.assertIs(df.linear_model.RidgeClassifierCV, lm.RidgeClassifierCV) self.assertIs(df.linear_model.RidgeCV, lm.RidgeCV) self.assertIs(df.linear_model.SGDClassifier, lm.SGDClassifier) self.assertIs(df.linear_model.SGDRegressor, lm.SGDRegressor) self.assertIs(df.linear_model.TheilSenRegressor, lm.TheilSenRegressor)