Python sklearn.linear_model.LogisticRegressionCV() Examples
The following are 22
code examples of sklearn.linear_model.LogisticRegressionCV().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.linear_model
, or try the search function
.
Example #1
Source File: modeling.py From kddcup2015 with GNU General Public License v2.0 | 7 votes |
def lr_with_scale(): """ Submission: lr_with_scale_0620_04.csv E_val: <missing> E_in: 0.857351105162 E_out: 0.854097855439904 """ from sklearn.linear_model import LogisticRegressionCV from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline X = util.fetch(util.cache_path('train_X_before_2014-08-01_22-00-47')) y = util.fetch(util.cache_path('train_y_before_2014-08-01_22-00-47')) raw_scaler = StandardScaler() raw_scaler.fit(X) X_scaled = raw_scaler.transform(X) clf = LogisticRegressionCV(cv=10, scoring='roc_auc', n_jobs=-1) clf.fit(X_scaled, y) print(auc_score(clf, X_scaled, y)) to_submission(Pipeline([('scale_raw', raw_scaler), ('lr', clf)]), 'lr_with_scale_0620_04')
Example #2
Source File: util.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def train_lr_rfeinman(densities_pos, densities_neg, uncerts_pos, uncerts_neg): """ TODO :param densities_pos: :param densities_neg: :param uncerts_pos: :param uncerts_neg: :return: """ values_neg = np.concatenate( (densities_neg.reshape((1, -1)), uncerts_neg.reshape((1, -1))), axis=0).transpose([1, 0]) values_pos = np.concatenate( (densities_pos.reshape((1, -1)), uncerts_pos.reshape((1, -1))), axis=0).transpose([1, 0]) values = np.concatenate((values_neg, values_pos)) labels = np.concatenate( (np.zeros_like(densities_neg), np.ones_like(densities_pos))) lr = LogisticRegressionCV(n_jobs=-1).fit(values, labels) return values, labels, lr
Example #3
Source File: test_sklearn_glm_classifier_converter.py From sklearn-onnx with MIT License | 6 votes |
def test_model_logistic_regression_cv_bool(self): model, X = fit_classification_model( linear_model.LogisticRegressionCV(max_iter=100), 3, is_bool=True) model_onnx = convert_sklearn( model, "logistic regression cv", [("input", BooleanTensorType([None, X.shape[1]]))]) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnLogitisticRegressionCVBool", # Operator cast-1 is not implemented in onnxruntime allow_failure="StrictVersion(onnx.__version__)" " < StrictVersion('1.3') or " "StrictVersion(onnxruntime.__version__)" " <= StrictVersion('0.2.1')", )
Example #4
Source File: test_sklearn_glm_classifier_converter.py From sklearn-onnx with MIT License | 6 votes |
def test_model_logistic_regression_cv_int(self): model, X = fit_classification_model( linear_model.LogisticRegressionCV(max_iter=100), 4, is_int=True) model_onnx = convert_sklearn( model, "logistic regression cv", [("input", Int64TensorType([None, X.shape[1]]))]) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnLogitisticRegressionCVInt", # Operator cast-1 is not implemented in onnxruntime allow_failure="StrictVersion(onnx.__version__)" " < StrictVersion('1.3') or " "StrictVersion(onnxruntime.__version__)" " <= StrictVersion('0.2.1')", )
Example #5
Source File: test_sklearn_glm_classifier_converter.py From sklearn-onnx with MIT License | 6 votes |
def test_model_logistic_regression_cv_binary_class(self): model, X = fit_classification_model( linear_model.LogisticRegressionCV(max_iter=100), 2) model_onnx = convert_sklearn( model, "logistic regression cv", [("input", FloatTensorType([None, X.shape[1]]))]) self.assertIsNotNone(model_onnx) dump_data_and_model( X, model, model_onnx, basename="SklearnLogitisticCVRegressionBinary", # Operator cast-1 is not implemented in onnxruntime allow_failure="StrictVersion(onnx.__version__)" " < StrictVersion('1.3') or " "StrictVersion(onnxruntime.__version__)" " <= StrictVersion('0.2.1')", )
Example #6
Source File: evaluator.py From EvalNE with MIT License | 6 votes |
def __init__(self, G, labels, nw_name, num_shuffles, traintest_fracs, trainvalid_frac, dim=128, nc_model=None): # General evaluation parameters self.G = G self.labels = labels[np.argsort(labels[:, 0]), :] self.nw_name = nw_name self.traintest_fracs = traintest_fracs self.trainvalid_frac = trainvalid_frac self.shuffles = self._init_shuffles(num_shuffles) self.dim = dim if nc_model is None: self.nc_model = LogisticRegressionCV(Cs=10, cv=3, penalty='l2', multi_class='ovr') else: self.nc_model = nc_model # Run some simple input checks self._check_labels()
Example #7
Source File: util.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def train_lr(X, y): """ TODO :param X: the data samples :param y: the labels :return: """ lr = LogisticRegressionCV(n_jobs=-1).fit(X, y) return lr
Example #8
Source File: test_linear_model.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.linear_model.ARDRegression, lm.ARDRegression) self.assertIs(df.linear_model.BayesianRidge, lm.BayesianRidge) self.assertIs(df.linear_model.ElasticNet, lm.ElasticNet) self.assertIs(df.linear_model.ElasticNetCV, lm.ElasticNetCV) self.assertIs(df.linear_model.HuberRegressor, lm.HuberRegressor) self.assertIs(df.linear_model.Lars, lm.Lars) self.assertIs(df.linear_model.LarsCV, lm.LarsCV) self.assertIs(df.linear_model.Lasso, lm.Lasso) self.assertIs(df.linear_model.LassoCV, lm.LassoCV) self.assertIs(df.linear_model.LassoLars, lm.LassoLars) self.assertIs(df.linear_model.LassoLarsCV, lm.LassoLarsCV) self.assertIs(df.linear_model.LassoLarsIC, lm.LassoLarsIC) self.assertIs(df.linear_model.LinearRegression, lm.LinearRegression) self.assertIs(df.linear_model.LogisticRegression, lm.LogisticRegression) self.assertIs(df.linear_model.LogisticRegressionCV, lm.LogisticRegressionCV) self.assertIs(df.linear_model.MultiTaskLasso, lm.MultiTaskLasso) self.assertIs(df.linear_model.MultiTaskElasticNet, lm.MultiTaskElasticNet) self.assertIs(df.linear_model.MultiTaskLassoCV, lm.MultiTaskLassoCV) self.assertIs(df.linear_model.MultiTaskElasticNetCV, lm.MultiTaskElasticNetCV) self.assertIs(df.linear_model.OrthogonalMatchingPursuit, lm.OrthogonalMatchingPursuit) self.assertIs(df.linear_model.OrthogonalMatchingPursuitCV, lm.OrthogonalMatchingPursuitCV) self.assertIs(df.linear_model.PassiveAggressiveClassifier, lm.PassiveAggressiveClassifier) self.assertIs(df.linear_model.PassiveAggressiveRegressor, lm.PassiveAggressiveRegressor) self.assertIs(df.linear_model.Perceptron, lm.Perceptron) self.assertIs(df.linear_model.RandomizedLasso, lm.RandomizedLasso) self.assertIs(df.linear_model.RandomizedLogisticRegression, lm.RandomizedLogisticRegression) self.assertIs(df.linear_model.RANSACRegressor, lm.RANSACRegressor) self.assertIs(df.linear_model.Ridge, lm.Ridge) self.assertIs(df.linear_model.RidgeClassifier, lm.RidgeClassifier) self.assertIs(df.linear_model.RidgeClassifierCV, lm.RidgeClassifierCV) self.assertIs(df.linear_model.RidgeCV, lm.RidgeCV) self.assertIs(df.linear_model.SGDClassifier, lm.SGDClassifier) self.assertIs(df.linear_model.SGDRegressor, lm.SGDRegressor) self.assertIs(df.linear_model.TheilSenRegressor, lm.TheilSenRegressor)
Example #9
Source File: utils.py From disentanglement_lib with Apache License 2.0 | 5 votes |
def logistic_regression_cv(): """Logistic regression with 5 folds cross validation.""" return LogisticRegressionCV(Cs=10, cv=KFold(n_splits=5))
Example #10
Source File: util.py From lid_adversarial_subspace_detection with MIT License | 5 votes |
def train_lr_rfeinman(densities_pos, densities_neg, uncerts_pos, uncerts_neg): """ TODO :param densities_pos: :param densities_neg: :param uncerts_pos: :param uncerts_neg: :return: """ values_neg = np.concatenate( (densities_neg.reshape((1, -1)), uncerts_neg.reshape((1, -1))), axis=0).transpose([1, 0]) values_pos = np.concatenate( (densities_pos.reshape((1, -1)), uncerts_pos.reshape((1, -1))), axis=0).transpose([1, 0]) values = np.concatenate((values_neg, values_pos)) labels = np.concatenate( (np.zeros_like(densities_neg), np.ones_like(densities_pos))) lr = LogisticRegressionCV(n_jobs=-1).fit(values, labels) return values, labels, lr
Example #11
Source File: util.py From lid_adversarial_subspace_detection with MIT License | 5 votes |
def train_lr(X, y): """ TODO :param X: the data samples :param y: the labels :return: """ lr = LogisticRegressionCV(n_jobs=-1).fit(X, y) return lr
Example #12
Source File: scdiff.py From scdiff with MIT License | 5 votes |
def getTransition(self,dTD,dTG,dMb,FCUT=1): G = self.getFC() dFC = {item[0].upper(): item[1] for item in G} etfID = [item[1] for item in self.etf] HGL = [item.upper() for item in self.GL] dR={0:2,1:-2,2:0} try: [X, Y,U,D] = buildTrain(G, dTG, etfID,self.GL,FCUT) dR = {0: U, 1: D, 2: 0} LR = LogisticRegressionCV(penalty='l1', Cs=[1.5, 2, 3, 4, 5], solver='liblinear', multi_class='ovr') LR.fit(X, Y) CE = LR.coef_ petf = parseLR(self.etf, CE) # --------------------------------------------------------- XX = [] for i in HGL: if i in dTG: tfi = dTG[i] xi = [1 if item in tfi else 0 for item in etfID] else: xi = [0] * len(etfID) XX.append(xi) YY = LR.predict(XX) self.etf = petf #pdb.set_trace() except: YY = [0 if dFC[item] > FCUT else 1 if dFC[item] < -1 * FCUT else 2 for item in HGL] YY = [dR[item] for item in YY] return YY #-------------------------------------------------------------------
Example #13
Source File: modeling.py From kddcup2015 with GNU General Public License v2.0 | 5 votes |
def lr_with_fs(): """ Submission: lr_with_fs_0620_02.csv E_val: <missing> E_in: 0.856252488379 E_out: 0.8552577388980213 """ from sklearn.linear_model import LogisticRegressionCV from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline X = util.fetch(util.cache_path('train_X_before_2014-08-01_22-00-47')) y = util.fetch(util.cache_path('train_y_before_2014-08-01_22-00-47')) raw_scaler = StandardScaler() raw_scaler.fit(X) X_scaled = raw_scaler.transform(X) rfe = util.fetch(util.cache_path('feature_selection.RFE.21')) X_pruned = rfe.transform(X_scaled) new_scaler = StandardScaler() new_scaler.fit(X_pruned) X_new = new_scaler.transform(X_pruned) clf = LogisticRegressionCV(cv=10, scoring='roc_auc', n_jobs=-1) clf.fit(X_new, y) print(auc_score(clf, X_new, y)) to_submission(Pipeline([('scale_raw', raw_scaler), ('rfe', rfe), ('scale_new', new_scaler), ('lr', clf)]), 'lr_with_fs_0620_02')
Example #14
Source File: modeling.py From kddcup2015 with GNU General Public License v2.0 | 5 votes |
def lr(): """ Submission: lr_0618.csv E_val: <missing> E_in: <missing> E_out: 0.8119110960575004 """ from sklearn.linear_model import LogisticRegressionCV X = util.fetch(util.cache_path('train_X_before_2014-08-01_22-00-47')) y = util.fetch(util.cache_path('train_y_before_2014-08-01_22-00-47')) clf = LogisticRegressionCV(cv=10, scoring='roc_auc', n_jobs=-1) clf.fit(X, y) print(auc_score(clf, X, y)) to_submission(clf, 'lr_0618_xxx')
Example #15
Source File: test_pprint.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_changed_only(): # Make sure the changed_only param is correctly used set_config(print_changed_only=True) lr = LogisticRegression(C=99) expected = """LogisticRegression(C=99)""" assert lr.__repr__() == expected # Check with a repr that doesn't fit on a single line lr = LogisticRegression(C=99, class_weight=.4, fit_intercept=False, tol=1234, verbose=True) expected = """ LogisticRegression(C=99, class_weight=0.4, fit_intercept=False, tol=1234, verbose=True)""" expected = expected[1:] # remove first \n assert lr.__repr__() == expected imputer = SimpleImputer(missing_values=0) expected = """SimpleImputer(missing_values=0)""" assert imputer.__repr__() == expected # Defaults to np.NaN, trying with float('NaN') imputer = SimpleImputer(missing_values=float('NaN')) expected = """SimpleImputer()""" assert imputer.__repr__() == expected # make sure array parameters don't throw error (see #13583) repr(LogisticRegressionCV(Cs=np.array([0.1, 1]))) set_config(print_changed_only=False)
Example #16
Source File: evaluator.py From EvalNE with MIT License | 5 votes |
def __init__(self, traintest_split, dim=128, lp_model=LogisticRegressionCV(Cs=10, cv=5, penalty='l2', scoring='roc_auc', solver='lbfgs', max_iter=100)): # General evaluation parameters super(NREvaluator, self).__init__(traintest_split, dim=dim, lp_model=lp_model)
Example #17
Source File: evaluator.py From EvalNE with MIT License | 5 votes |
def __init__(self, traintest_split, trainvalid_split=None, dim=128, lp_model=LogisticRegressionCV(Cs=10, cv=5, penalty='l2', scoring='roc_auc', solver='lbfgs', max_iter=100)): # General evaluation parameters self.traintest_split = traintest_split self.trainvalid_split = trainvalid_split self.dim = dim self.edge_embed_method = None self.lp_model = lp_model
Example #18
Source File: pipeline.py From EvalNE with MIT License | 5 votes |
def lp_model(self): model = self._config.get('GENERAL', 'lp_model') if model == 'LogisticRegression': return LogisticRegression(solver='liblinear') elif model == 'LogisticRegressionCV': return LogisticRegressionCV(Cs=10, cv=5, penalty='l2', scoring='roc_auc', solver='lbfgs', max_iter=100) elif model == 'DecisionTreeClassifier': return DecisionTreeClassifier() elif model == 'SVM': parameters = {'C': [0.1, 1, 10, 100, 1000]} return GridSearchCV(LinearSVC(), parameters, cv=5) else: return util.auto_import(model)
Example #19
Source File: utils.py From sadl with MIT License | 5 votes |
def compute_roc_auc(test_sa, adv_sa, split=1000): tr_test_sa = np.array(test_sa[:split]) tr_adv_sa = np.array(adv_sa[:split]) tr_values = np.concatenate( (tr_test_sa.reshape(-1, 1), tr_adv_sa.reshape(-1, 1)), axis=0 ) tr_labels = np.concatenate( (np.zeros_like(tr_test_sa), np.ones_like(tr_adv_sa)), axis=0 ) lr = LogisticRegressionCV(cv=5, n_jobs=-1).fit(tr_values, tr_labels) ts_test_sa = np.array(test_sa[split:]) ts_adv_sa = np.array(adv_sa[split:]) values = np.concatenate( (ts_test_sa.reshape(-1, 1), ts_adv_sa.reshape(-1, 1)), axis=0 ) labels = np.concatenate( (np.zeros_like(ts_test_sa), np.ones_like(ts_adv_sa)), axis=0 ) probs = lr.predict_proba(values)[:, 1] _, _, auc_score = compute_roc( probs_neg=probs[: (len(test_sa) - split)], probs_pos=probs[(len(test_sa) - split) :], ) return auc_score
Example #20
Source File: test_iw.py From libTLDA with MIT License | 5 votes |
def test_regularization(): """Test for fitting the model.""" X = rnd.randn(10, 2) y = np.hstack((-np.ones((5,)), np.ones((5,)))) Z = rnd.randn(10, 2) + 1 clf = ImportanceWeightedClassifier(loss_function='lr', l2_regularization=None) assert isinstance(clf.clf, LogisticRegressionCV) clf = ImportanceWeightedClassifier(loss_function='lr', l2_regularization=1.0) assert isinstance(clf.clf, LogisticRegression)
Example #21
Source File: utils.py From graph2gauss with MIT License | 4 votes |
def score_node_classification(features, z, p_labeled=0.1, n_repeat=10, norm=False): """ Train a classifier using the node embeddings as features and reports the performance. Parameters ---------- features : array-like, shape [N, L] The features used to train the classifier, i.e. the node embeddings z : array-like, shape [N] The ground truth labels p_labeled : float Percentage of nodes to use for training the classifier n_repeat : int Number of times to repeat the experiment norm Returns ------- f1_micro: float F_1 Score (micro) averaged of n_repeat trials. f1_micro : float F_1 Score (macro) averaged of n_repeat trials. """ lrcv = LogisticRegressionCV() if norm: features = normalize(features) trace = [] for seed in range(n_repeat): sss = StratifiedShuffleSplit(n_splits=1, test_size=1 - p_labeled, random_state=seed) split_train, split_test = next(sss.split(features, z)) lrcv.fit(features[split_train], z[split_train]) predicted = lrcv.predict(features[split_test]) f1_micro = f1_score(z[split_test], predicted, average='micro') f1_macro = f1_score(z[split_test], predicted, average='macro') trace.append((f1_micro, f1_macro)) return np.array(trace).mean(0)
Example #22
Source File: test_econml_estimator.py From dowhy with MIT License | 4 votes |
def test_backdoor_estimators(self): # Setup data data = datasets.linear_dataset( 10, num_common_causes=4, num_samples=10000, num_instruments=2, num_effect_modifiers=2, num_treatments=1, treatment_is_binary=False) df = data['df'] model = CausalModel( data=data["df"], treatment=data["treatment_name"], outcome=data["outcome_name"], effect_modifiers=data["effect_modifier_names"], graph=data["gml_graph"] ) identified_estimand = model.identify_effect(proceed_when_unidentifiable=True) # Test LinearDMLCateEstimator dml_estimate = model.estimate_effect( identified_estimand, method_name="backdoor.econml.dml.LinearDMLCateEstimator", control_value=0, treatment_value=1, target_units=lambda df: df["X0"] > 1, # condition used for CATE method_params={"init_params": { 'model_y': GradientBoostingRegressor(), 'model_t': GradientBoostingRegressor(), 'featurizer': PolynomialFeatures(degree=1, include_bias=True)}, "fit_params": {} } ) # Test ContinuousTreatmentOrthoForest orthoforest_estimate = model.estimate_effect( identified_estimand, method_name="backdoor.econml.ortho_forest.ContinuousTreatmentOrthoForest", target_units=lambda df: df["X0"] > 2, method_params={ "init_params": {'n_trees': 10}, "fit_params": {} } ) # Test LinearDRLearner data_binary = datasets.linear_dataset( 10, num_common_causes=4, num_samples=10000, num_instruments=2, num_effect_modifiers=2, treatment_is_binary=True, outcome_is_binary=True) model_binary = CausalModel( data=data_binary["df"], treatment=data_binary["treatment_name"], outcome=data_binary["outcome_name"], effect_modifiers=data["effect_modifier_names"], graph=data_binary["gml_graph"]) identified_estimand_binary = model_binary.identify_effect(proceed_when_unidentifiable=True) drlearner_estimate = model_binary.estimate_effect( identified_estimand_binary, method_name="backdoor.econml.drlearner.LinearDRLearner", target_units=lambda df: df["X0"] > 1, confidence_intervals=False, method_params={ "init_params": {'model_propensity': LogisticRegressionCV(cv=3, solver='lbfgs', multi_class='auto')}, "fit_params": {} })